

Lecture Notes in Artificial Intelligence 3492
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

FoLLI Publications on Logic, Language and Information

Editors-in-Chief

Luigia Carlucci Aiello, University of Rome "La Sapienza", Italy

Michael Moortgat, University of Utrecht, The Netherlands

Maarten de Rijke, University of Amsterdam, The Netherlands

Editorial Board

Carlos Areces, INRIA Lorraine, France

Nicholas Asher, University of Texas at Austin, TX, USA

Johan van Benthem, University of Amsterdam, The Netherlands

Raffaella Bernardi, Free University of Bozen-Bolzano, Italy

Antal van den Bosch, Tilburg University, The Netherlands

Paul Buitelaar, DFKI, Saarbrücken, Germany

Diego Calvanese, Free University of Bozen-Bolzano, Italy

Ann Copestake, University of Cambridge, United Kingdom

Robert Dale, Macquarie University, Sydney, Australia

Luis Fariñas, IRIT, Toulouse, France

Claire Gardent, INRIA Lorraine, France

Rajeev Goré, Australian National University, Canberra, Australia

Reiner Hähnle, Chalmers University of Technology, Göteborg, Sweden

Wilfrid Hodges, Queen Mary, University of London, United Kingdom

Carsten Lutz, Dresden University of Technology, Germany

Christopher Manning, Stanford University, CA, USA

Valeria de Paiva, Palo Alto Research Center, CA, USA

Martha Palmer, University of Pennsylvania, PA, USA

Alberto Policriti, University of Udine, Italy

James Rogers, Earlham College, Richmond, IN, USA

Francesca Rossi, University of Padua, Italy

Yde Venema, University of Amsterdam, The Netherlands

Bonnie Webber, University of Edinburgh, Scotland, United Kingdom

Ian H. Witten, University of Waikato, New Zealand

Philippe Blache Edward Stabler
Joan Busquets Richard Moot (Eds.)

Logical Aspects
of Computational
Linguistics

5th International Conference, LACL 2005
Bordeaux, France, April 28-30, 2005
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Philippe Blache
Université de Provence
CNRS, Laboratoire Parole et Langage
29, Avenue Robert Schuman, 13621 Aix-en-Provence, France
E-mail: pb@lpl.univ-aix.fr

Edward Stabler
UCLA Department of Linguistics
3125 Campbell Hall, Box 951543, Los Angeles, CA 90095-1542, USA
E-mail: stabler@ucla.edu

Joan Busquets
Université Bordeaux 3
CNRS, ERSS
Domaine Universitaire, 33607 Pessac Cedex, France
E-mail: busquets@u-bordeaux3.fr

Richard Moot
Université Bordeaux 1
CNRS, LaBRI
351, Cours de la Libération, 33405 Talence Cedex, France
E-mail: Richard.Moot@labri.fr

Library of Congress Control Number: 2005924437

CR Subject Classification (1998): I.2, F.4.1

ISSN 0302-9743
ISBN-10 3-540-25783-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25783-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11422532 06/3142 5 4 3 2 1 0

Preface

This volume contains the proceedings of the 5th International Conference on
Logical Aspects of Computational Linguistics held April 28–30, 2005 in Bor-
deaux, France. This proceedings contains papers on a wide range of logical and
formal methods in computational linguistics, with studies of particular grammar
formalisms (Categorial Grammars, TAG, Dependency Grammars or Minimalist
Grammars) and their computational properties (complexity, determinism, unifi-
cation), language engineering (grammar development, parsing, translation) and
traditional questions about the syntax/semantics interface. Formal aspects are
moreover assessed with actual linguistic data from different languages (English,
French, Arabic), which is the sign of a maturing field.

This text, as well as the conference itself, is then the occasion to bring to-
gether people coming from different horizons: logicians, linguists, computational
scientists. This fits perfectly well with the mission of FoLLI, the Association
Logic, Language and Information, and so this textbook inaugurates the new
FoLLI/LNAI series.

The Program Committee faced a difficult task because we received many
submissions (40% rejected), and the reviewing task had to be done quickly. We
thank all our reviewers and especially those who had to be recruited at the last
minute. We also thank very much the Organizing Committee. Bordeaux, known
as a wine capital, is now becoming a research center in this field.

We would like to thank all the people who made this 5th LACL possible: the
Program Committee, the external reviewers, the Organizing Committee, and
the LACL sponsors. Last, but not least, very special thanks to Christian Retoré
who has been, since the very beginning, the heart of LACL. This conference,
and these books, simply would not exist without him.

April 2005 Philippe Blache and Edward Stabler

of

Organization

LACL 2005 was organized by INRIA, Université Bordeaux 1, and Université
Bordeaux 3.

Program Committee

Conference Chairs Philippe Blache (Université de Provence, France)
Edward Stabler (University of California, USA)
Joan Busquets (ERSS and INRIA)
Richard Moot (LABRI and INRIA)

Organizing Chairs Joan Busquets (ERSS and INRIA)
Richard Moot (LABRI and INRIA)

Referees

D. Aguilar-Solis
J.-M. Andreoli
P. Blache
J. Bos
J. Busquets
H. Christiansen
V. Dahl
P. de Groote
M. de Rijke
D. Duchier
M. Dymetman

K. Gerdes
F. Hamm
G. Holst
G. Jaeger
S. Kepser
G. Kobele
M. Kracht
A. Lecomte
U. Moennich
M. Moortgat
R. Moot

G. Morrill
D. Oehrle
J.-P. Prost
C. Retoré
F. Richter
J. Rogers
V. Shanker
E. Stabler
M. Steedman

Organizing Committee

Maxime Amblard (Université Bordeaux 1 and LaBRI-CNRS and
INRIA)

Philippe Biais (CNRS LaBRI)
Karine Cabandé (CNRS DR Aquitaine et Poitou-Charentes)
Catherine Girard (INRIA-Futurs)
Patrick Henry (CNRS LABRI and INRIA-Futurs)
Brigitte Larue-Bourdon (INRIA-Futurs)
Jean-Louis Lassartesses (Université Bordeaux 1)
Annie Nadeau (CNRS DR Aquitaine et Poitou-Charentes)
Christian Retoré (Université Bordeaux 1 and LaBRI-CNRS and

INRIA)

VIII Organization

Sponsoring Institutions

CNRS
INRIA
Université Bordeaux 1
Université Bordeaux 3
Pôle Universitaire de Bordeaux
Conseil Régional d’Aquitaine
France Télécom
ERSS
CoLogNet

Table of Contents

LACL

k-Valued Non-associative Lambek Grammars (Without Product) Form
a Strict Hierarchy of Languages

Denis Béchet, Annie Foret . 1

Dependency Structure Grammars
Denis Béchet, Alexander Dikovsky, Annie Foret . 18

Towards a Computational Treatment of Binding Theory
Roberto Bonato . 35

Translating Formal Software Specifications to Natural Language.
A Grammar-Based Approach

David A. Burke, Kristofer Johannisson . 51

On the Selective Lambek Calculus
Marcelo da S. Corrêa, E. Hermann Haeusler . 67

Grammatical Development with XMG
Benôıt Crabbé . 84

Lambek-Calculus with General Elimination Rules and Continuation
Semantics

Nissim Francez . 101

A Note on the Complexity of Constraint Interaction: Locality
Conditions and Minimalist Grammars

Hans-Martin Gärtner, Jens Michaelis . 114

Large Scale Semantic Construction for Tree Adjoining Grammars
Claire Gardent, Yannick Parmentier . 131

A Compositional Approach Towards Semantic Representation and
Construction of ARABIC

Bassam Haddad, Mustafa Yaseen . 147

Strict Deterministic Aspects of Minimalist Grammars
John T. Hale, Edward P. Stabler . 162

X Table of Contents

A Polynomial Time Extension of Parallel Multiple Context-Free
Grammar

Peter Ljunglöf . 177

Learnable Classes of General Combinatory Grammars
Erwan Moreau . 189

On Expressing Vague Quantification and Scalar Implicatures in the
Logic of Partial Information

Areski Nait Abdallah, Alain Lecomte . 205

Describing Lambda Terms in Context Unification
Joachim Niehren, Mateu Villaret . 221

Category Theoretical Semantics for Pregroup Grammars
Anne Preller . 238

Feature Constraint Logic and Error Detection in ICALL Systems
Veit Reuer, Kai-Uwe Kühnberger . 255

Linguistic Facts as Predicates over Ranges of the Sentence
Benôıt Sagot . 271

How to Build Argumental Graphs Using TAG Shared Forest: A View
from Control Verbs Problematic

Djamé Seddah, Bertrand Gaiffe . 287

When Categorial Grammar Meet Regular Grammatical Inference
Isabelle Tellier . 301

The Expressive Power of Restricted Fragments of English
Allan Third . 317

The Complexity and Generative Capacity of Lexicalized Abstract
Categorial Grammars

Ryo Yoshinaka, Makoto Kanazawa . 330

More Algebras for Determiners
Richard Zuber . 347

Author Index . 363

s

k-Valued Non-associative Lambek Grammars
(Without Product) Form a Strict Hierarchy of

Languages

Denis Béchet1 and Annie Foret2

1 LINA – FRE 2729, Université de Nantes & CNRS
2, rue de la Houssiniére — BP 92208, 44322 Nantes Cedex 03, France

Denis.Bechet@univ-nantes.fr
2 IRISA – Université de Rennes 1, Campus Universitaire de Beaulieu,

Avenue du Général Leclerc, 35042 Rennes Cedex, France
Annie.Foret@irisa.fr

Abstract. The notion of k-valued categorial grammars where a word
is associated to at most k types is often used in the field of lexical-
ized grammars as a fruitful constraint for obtaining several properties
like the existence of learning algorithms. This principle is relevant only
when the classes of k-valued grammars correspond to a real hierarchy
of languages. This paper establishes the relevance of this notion for two
related grammatical systems. In the first part, the classes of k-valued
non-associative Lambek (NL) grammars without product is proved to
define a strict hierarchy of languages. The second part introduces the no-
tion of generalized functor argument for non-associative Lambek (NL∅)
calculus without product but allowing empty antecedent and establishes
also that the classes of k-valued NL∅ grammars without product form a
strict hierarchy of languages.

1 Introduction

The field of natural language processing includes lexicalized grammars such as
classical categorial grammars [1], the different variants of Lambek calculus [2],
lexicalized tree adjoining grammars [3], etc. In these lexicalized formalisms, a k-
valued grammar associates at most k categories to each word of the lexicon. For
a particular model of lexicalized grammars and their corresponding languages,
this definition forms a (strict) hierarchy of classes of grammars when k increases.
This hierarchy of grammars corresponds to a growing list of classes of languages
that does not necessarily form a strict hierarchy.

In fact, in the field of lexicalized grammars, the concept of k-valued grammars
is often used to define sub-classes of grammars and languages that satify some
property when the whole class does not satify it. In particular, this notion is
important for a lot of learnability results in Gold’s model [4]. Usually, to find a
positive result, some kind of restriction is necessary because very often the whole

P. Blache (Eds.): LACL 2005, LNAI 3492, pp. 1–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

et al.

2 D. Béchet and A. Foret

class of grammars corresponds to (at least) context free languages and this class
is known to be unlearnable no matter which grammatical system is used1.

Usually, when the learnability can be established for a particular k-valued
class of grammars, this property can also be proved for any k ∈ N. When this
assumption is true, for each k ∈ N, there exists a learning algorithm that learns
the grammars of this class from positive examples even if the whole class is not
learnable (there does not exist a universal learning algorithm for all k ∈ N): we
hope that all the interesting grammars (the grammars for natural languages, for
instance) are in a particular k-valued class.

In this context, we can wonder if, for a particular system of lexicalized gram-
mars and languages, the class of classes of languages forms a strict hierarchy. If
this assumption is not verified for a system, it usually means that for a certain
k the class of k-valued languages is the same as the whole class: the hierarchy is
truncated. The other possibility which is very rare consists in a hierarchy that
has infinite steps, some steps corresponding to several contiguous integers. In
this context, the proof that the hierarchy is not strict is usually a bad news for
the concept of k-valued grammars corresponding to a system. For instance, the
classes of k-valued classical categorial grammar form a strict hierarchy of lan-
guages [5] and for each k ∈ N, the class of k-valued classical categorial grammar
is learnable from positive examples.

In the paper, we are interested to prove that non-associative Lambek gram-
mars without product (written NL) and non-associative Lambek grammars with-
out product but with empty antecedent (written NL∅) form two strict hierarchies
of classes of languages. The results give a direct justification of the notion of k-
valued grammars for both systems. The paper also recalls a useful alternative
presentation of NL using generalized AB deductions (written GAB) and general-
ized functor-argument structures (written FA) that were used in [6] for defining
a learning algorithm but are a central notion in the paper for proving the strict
hierarchy. For NL∅, the paper introduces similar notions: generalized AB deduc-
tions with empty applications (written GAB∅) and generalized functor-argument
structures with empty arguments (written FA∅). This presentation is also proved,
in the paper, to be equivalent to NL∅ and the hierarchy theorem is given.

The paper is organized as follows. Section 2 gives some background knowl-
edge on non-associative Lambek categorial grammars (without product). Sec-
tion 3 focuses on (recently defined) structures, with alternative deduction rules
for NL-grammars (without product) as generalized FA-structures; in fact these
rules are extensions of the cancellation rules of classical categorial grammars that
lead to the generalization of FA-structures used here. Section 4 presents the proof
that the class of k-valued non-associative Lambek categorial grammars without
product form a strict hierarchy. Section 5 considers the NL∅ variant of NL ; we

1 The class of context free language has a limit point: ∃L, (Li)i∈N such that L =⋃
i∈N

Li and ∀i ∈ N Li � Li+1. This property entails that any class of grammars that
corresponds to (a superclass of) context free languages (of strings) is not learnable
from positive examples.

k-Valued Non-associative Lambek Grammars 3

define generalized functor-argument structures for this variant and a strict hi-
erarchy theorem; we also revisit the case of AB (classical categorial grammars).
Section 6 concludes.

2 Background

2.1 Categorial Grammars

The reader not familiar with Lambek Calculus and its non-associative version
will find nice presentation in the first articles written by Lambek [2, 7] or more
recently in [8, 9, 10, 11, 12, 13]. We use in the paper two variants of Lambek calcu-
lus: non-associative Lambek calculus without product with (NL∅) and without
(NL) empty antecedent.

Definition 1 (Types). The types Tp, or formulas, are generated from a set of
primitive types Pr, or atomic formulas, by two binary connectives2 “/” (over)
and “ \” (under):

Tp ::= Pr | Tp\Tp | Tp/Tp

Definition 2 (Rigid and k-valued categorial grammars). A categorial
grammar is a structure G = (Σ, I, S) where:

– Σ is a finite alphabet (the words in the sentences);
– I : Σ �→ Pf (Tp) is a function (called a lexicon) that maps a finite set of

types to each element of Σ (the possible categories of each word);
– S ∈ Pr is the main type associated to correct sentences.

If X ∈ I(a), we say that G associates X to a and we write G : a �→ X.
A k-valued categorial grammar is a categorial grammar where, for every word

a ∈ Σ, I(a) has at most k elements. A rigid categorial grammar is a 1-valued
categorial grammar.

2.2 Non-associative Lambek Calculi NL and NL∅

NL/NL∅ Derivation �NL/�NL∅ . As a logical system, we use Gentzen-style
sequent presentation. A sequent Γ � A is composed of a binary tree of formulas
Γ (the set of such trees is noted TTp) which is the antecedent configuration and a
succedent formula A. A context Γ [·] is a binary tree of formulas with a hole. For
X, a formula or a binary tree of formulas, Γ [X] is the binary tree obtained from
Γ [·] by filling the hole with X. Γ can be empty in NL∅: Γ belongs to TTp ∪ {∅}.
In fact, to completely define the rules of NL∅, we use two equivalence relations
on binary trees of formulas and the empty set3:

Γ [(∅,Δ)] ≡NL∅ Γ [Δ] ≡NL∅ Γ [(Δ, ∅)]

2 No product connective is used in the paper.
3 One can define NL∅ without the two equivalence relations by specializing the rules

when one of the antecedents is empty but this gives a much longer definition.

4 D. Béchet and A. Foret

Definition 3 (NL/NL∅). A sequent is valid in NL/NL∅ and is noted Γ �NL

A/Γ �NL∅ A iff Γ � A can be deduced from the following rules:

Ax
A � A

(Γ,B) � A
/R

Γ � A/B

(A,Γ) � B
\R

Γ � A\B

Γ � A Δ[A] � B
Cut

Δ[Γ] � B

Γ � A Δ[B] � C
/L

Δ[(B/A, Γ)] � C

Γ � A Δ[B] � C
\L

Δ[(Γ,A\B)] � C

Cut Elimination. We recall that the cut rule can be eliminated in �NL and in
�NL∅ : every derivable sequent has a cut-free derivation.

NL/NL∅ Languages. E+ denotes the set of non-empty strings over E . TE is
the set of (non-empty) well-bracketed lists (binary trees) of elements of E .

Definition 4 (Yield). If T is a tree where the leaves are elements of a set E,
yieldE(T) ∈ E+ is the list of leaves of T .

This notation will be used for well-bracketed lists of words yieldΣ , for binary
trees of formulas yieldTp and will be extended to FA structures (see further
Definition 7).

Definition 5 (Language). Let G = (Σ, I, S) be a categorial grammar.

– G generates a well-bracketed list of words T ∈ TΣ (in NL/NL∅ model)
iff there exists Γ a binary tree of types, c1, . . . , cn ∈ Σ and A1, . . . , An ∈ Tp
such that: ⎧⎨

⎩
G : ci �→ Ai (1 ≤ i ≤ n)
Γ = T [c1 → A1, . . . , cn → An]
Γ �NL S/Γ �NL∅ S

where T [c1 → A1, . . . , cn → An] means the binary tree obtained from T by
substituting the left to right occurrences of c1, . . . , cn by A1, . . . , An.

– G generates a string c1 · · · cn ∈ Σ+ iff there exists T ∈ TΣ such that
yieldΣ(T) = c1 · · · cn and G generates T .

– The language of well-bracketed lists of words of G, written BLNL(G)/
BLNL∅(G), is the set of well-bracketed lists of words generated by G.

– The language of strings corresponding to G, written LNL(G)/LNL∅(G), is
the set of strings generated by G.

One interest of NL when compared to classical categorial grammars lies in
its possibility to easily encode a restriction on the use of a basic category. For
instance when we want to distinguish between a noun phrase and pronouns in
subject position or object position, we can proceed as follows.

Example 1. Let Σ1 = {John,Mary, likes, he, she, him, her} and let Pr1 =
{S,N,X1, X2}. We define the following rigid grammar:

k-Valued Non-associative Lambek Grammars 5

G1 =
{

John,Mary �→ N ; he, she �→ N1;
him, her �→ N2 ; likes �→ N1\(S/N2).

where N1 = X1/(N \X1) and N2 = X2/(N \X2).
We get: ((He likes) Mary) ∈ BLNL(G1) but: John likes she
∈ LNL(G1).

With NL∅, we can introduce a restrictive form of optional arguments; “little”,
in the following example, is optionally associated to proper nouns. This is not
possible directly with NL.

Example 2. Let Σ2 = {John,Mary, likes, little} and let Pr2 = {S,N,L}.

We define: G2 =
{

John �→ (L\L)\N ; Mary �→ (L\L)\N
little �→ L\L ; likes �→ N \(S/N)

G2 is a rigid (or 1-valued) grammar. We can prove that (((L \L) \N, N \
(S/N)), (L\L)\N) �NL∅ S and (((L\L)\N, N\(S/N)), (L\L, (L\L)\N)) �NL∅ S.
Thus, we get:

John likes Mary ∈ LNL∅(G2) ; John likes little Mary ∈ LNL∅(G2)
((John likes) Mary) ∈ BLNL∅(G2) ; ((John likes) (little Mary)) ∈ BLNL∅(G2)

2.3 Some Useful Models

Powerset Residuated Groupoids and Semi-groups. Let (M, .) be a
groupoid. Let P(M) denote the powerset of M . A powerset residuated groupoid
over (M, .) is the structure (P(M), ◦,⇒,⇐,⊆) such that for X,Y ⊆ M :

X ◦ Y = {x.y : x ∈ X, y ∈ Y }
X ⇒ Y = {y ∈ M : (∀x ∈ X) x.y ∈ Y }
Y ⇐ X = {y ∈ M : (∀x ∈ X) y.x ∈ Y }

If (M, .) has a unit I (that is : ∀x ∈ M : I.x = x.I = x), then the above
structure is a powerset residuated groupoid with unit (it has {I} as unit).

Interpretation. Given a powerset residuated groupoid (P(M), ◦,⇒,⇐,⊆), an
interpretation is a map from primitive types p to elements [[p]] in P(M) that is
extended to types and sequences in the natural way :

[[C1\C2]] = [[C1]] ⇒ [[C2]] ; [[C1/C2]] = [[C1]] ⇐ [[C2]] ; [[(C1, C2)]] = ([[C1]] ◦ [[C2]])

By a model property for NL : If Γ �NL C then [[Γ]] ⊆ [[C]]
If (M, .) is a groupoid with a unit I, we add [[∅]] = {I} for the empty sequence
∅ and get a model property for NL∅ : if Γ �NL∅ C then [[Γ]] ⊆ [[C]].

3 GAB Deductions and Generalized FA-Structures

In this section we focus on (recently defined) structures [6], with alternative de-
duction rules for NL-grammars (without product) as generalized FA-structures;
in fact these rules are extensions of the cancellation rules of classical categorial
grammars that lead to the generalization of FA-structures used here.

6 D. Béchet and A. Foret

3.1 FA Structures ver a Set E
We give a general definition of FA structures over a set E , whereas in practice E
is either an alphabet Σ or a set of types such as Tp.

Definition 6 (FA structures). Let E be a set, a FA structure over E is a
binary tree where each leaf is labelled by an element of E and each internal node
is labelled by FApp (forward application) or BApp (backward application):

FAE ::= E | FApp(FAE ,FAE) | BApp(FAE ,FAE)

Definition 7 (Tree yield). The well-bracketed list of words obtained from a
FA structure F over E by forgetting FApp and BApp labels is called the tree yield
of F over E (notation treeE(F)).

3.2 GAB Deductions

Definition 8 (GAB Deduction). Generalized AB deductions (GAB deduc-
tions) over Tp are the deductions built from formulas on Tp (the base case)
using the following conditional rules (C �NL B must be valid in NL):

A/B C
FApp

A

C B\A
BApp

A
C �NL B valid in NL

GAB deductions can be seen as a generalization of AB deductions in the
following sense: for AB application rules C and B must be the same formula.

Definition 9 (FA structure of a GAB deduction). To each GAB deduction
P, we associate a FA structure, written FATp(P), such that each internal node
corresponds to the application of a rule in P and is labelled by the name of this
rule and where the leaves are the same as in P.

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
�

�� FApp

FApp FApp

BApp

NNP/N

NP/N N

(NP \S)/NP

NP/N N
FApp

NP

(NP \S)/NP

NP/N N
FApp

NP
FApp

NP \S
BApp

S

Here, NP = X/(NP \X) and thus NP �NL NP

o

k-Valued Non-associative Lambek Grammars 7

Definition 10 (GAB Deductions of F �GAB A or Γ �GAB A).

– For a FA structure F ∈ FATp (over types) and A ∈ Tp, we say that P is a
GAB deduction4 of F �GAB A when A is the type of the conclusion of P and
when FATp(P) = F .

– For a tree Γ ∈ TTp (over types) and A ∈ Tp, we say that P is a GAB
deduction of Γ �GAB A when A is the type of the conclusion of P and when
treeTp(FATp(P)) = Γ .

GAB Languages. Similarly to classical categorial grammars, we can associate
to each categorial grammar a language of FA structures.

Definition 11 (GAB Languages). Let G = (Σ, I, S) be a categorial grammar
over Tp :

• G = (Σ, I, S) generates a FA structure F ∈ FAΣ (in the GAB deriva-
tion model) iff there exists a GAB derivation of a FA structure D ∈ FATp,
c1, . . . , cn ∈ Σ and A1, . . . , An ∈ Tp such that:⎧⎨

⎩
G : ci �→ Ai (1 ≤ i ≤ n)
D = F [c1 → A1, . . . , cn → An]
D �GAB S

where F [c1 → A1, . . . , cn → An] means the FA structure obtained from
F by substituting respectively the left to right occurrences of c1, . . . , cn by
A1, . . . , An.

• G generates a well-bracketed list of words T ∈ TΣ iff there exists F ∈ FAΣ

such that treeΣ(F) = T and G generates F .
• G generates a string c1 · · · cn ∈ Σ+ iff there exists F ∈ FAΣ such that

yieldΣ(treeΣ(F)) = c1 · · · cn and G generates F .
• The language of FA structures corresponding to G, written FLGAB(G), is the

set of FA structures generated by G.
• The language of well-bracketed lists of words corresponding to G, written
BLGAB(G), is the set of well-bracketed lists of words generated by G.

• The language of strings corresponding to G, written LGAB(G), is the set of
strings generated by G.

Example 3. If we take the categorial grammar that is defined in Example 1,
we get:

He likes Mary ∈ LGAB(G1)
((He likes) Mary) ∈ BLGAB(G1)

FApp(BApp(He, likes),Mary) ∈ FLGAB(G1)

because we can build the following GAB deduction (where N2 = X2/(N \X2)
that entails N � N2):

4 In fact, given a FA structure F , there is at most one GAB deduction P s.t. FATp(P) =
F (FATp is injective)

8 D. Béchet and A. Foret

He︷︸︸︷
N1

likes︷ ︸︸ ︷
N1\(S/N2)

BApp
S/N2

Mary︷︸︸︷
N

FApp
S

however: Mary likes he
∈ LGAB(G1)

3.3 NL and GAB Languages

In fact, there is a strong correspondence between GAB deductions and NL deriva-
tions. In particular Theorem 1 shows that the respective string languages and
binary tree languages are the same.

Theorem 1 ([6]). If A is an atomic formula, Γ �GAB A iff Γ �NL A

Corollary 1. BLNL(G) = BLGAB(G) and LNL(G) = LGAB(G)

4 A Strict Hierarchy

For each k ∈ N, we can consider the class Ck
NL of languages corresponding to

k-valued non-associative Lambek grammars (without product) that is the gram-
mars with at most k types associated to each word of the lexicon. This section
proves that this family forms a strict hierarchy (if the lexicon has at least 2
elements):

Theorem 2. ∀k ∈ N Ck
NL � Ck+1

NL

For instance, a first very easy result is given by the fact that C0
NL � C1

NL because
C0

NL = ∅ and C1
NL contains the (finite) language {a} = LNL(G) for the rigid

grammar G : a �→ S.

4.1 Overview

Previous Works. A similar problem was solved by Kanazawa in [5] for the
classes of k-valued classical categorial grammars. The proof scheme was as fol-
lows:
- Languages: for k > 0, LAB,k =def {aibaibai | 1 ≤ i ≤ 2k}
- Grammars:5 for k > 0,

Gk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a �→ x,
(· · · (S /x) · · · /x)︸ ︷︷ ︸

i

/y) /x) · · · /x)︸ ︷︷ ︸
i

/y) /x) · · · /x)︸ ︷︷ ︸
i−1

(1 ≤ i ≤ k)

b �→ y,
(x\(· · ·\(x\︸ ︷︷ ︸

i

(· · · (S /x) · · · /x)︸ ︷︷ ︸
i

/y) /x) · · · /x)︸ ︷︷ ︸
i

· · ·) (k + 1 ≤ i ≤ 2k)

5 In fact, the second type of a can be abbreviated as S/xiyxiyi−1 and the second type
of b can be abbreviated as xi\(S/xiyxi).

k-Valued Non-associative Lambek Grammars 9

- The language (for AB) of Gk is LAB,k.
- Property: for k > 0, LAB,k is a (k + 1)-valued language but is not a k-valued

language for classical categorial grammars.

Towards NL. We can show easily that the languages of grammars Gk is the
same when we consider the NL calculus instead of the AB rules : because the
order of the types in the grammars are at most one, and in such a case it is well-
known that the NL-languages and the AB-languages associated to a grammar
are the same.

This shows that the languages LAB,k are also (k + 1)-valued languages for
NL. It is thus natural to ask whether they are k¯valued for NL as well. In fact,
when we proceed to a proof based on functor-argument structures, some of the
arguments are no longer valid for NL, in the case of GAB-deductions.

We have thus constructed another language, based on the previous one, with
some very similar proof steps. One key difference appears at stage 4.(e)(f) that
does not apply to LAB,k that has only 2k words. An important point of our
treatment for NL is precisely that the language constructed is both k +1-valued
and with 2k + 1 words.

The proof scheme is as follows:

1. Obviously, we have ∀k ∈ N Ck
NL ⊆ Ck+1

NL

2. For k > 0, we consider LNL,k =def {abb} ∪ {aibaibai | 1 ≤ i ≤ 2k}
3. We prove that LNL,k is a (k + 1)-valued language for NL languages.

Proof: for k > 0, We define a k + 1-valued grammar and show that it is
associated to LNL,k. This part of the proof uses models of NL (see 4.2 below).

4. We prove that LNL,k is not a k-valued language for NL languages.
Proof : suppose G is a k-valued grammar with language LNL,k

(a) For each element of LNL,k, there exists a GAB deduction: Ti for aibaibai

(1 ≤ i ≤ 2k) and T0 for abb.
(b) For 0 ≤ i ≤ 2k, we define Ai as the root type of the smallest subtree in

Ti with a yield including both b:

�
�

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
��

.......
.......
.......

.......
.......
.......

.

..............................
..

a...a

B̂i

Bi Ci

Ai

FApp

S

a...a a...a︸ ︷︷ ︸
i2

b a...a︸ ︷︷ ︸
i3

a...a︸ ︷︷ ︸
i0

b a...a︸ ︷︷ ︸
i1

This gives two subtrees with one
b with yields ai0bai1 and ai2bai3

(i1 + i2 = i). Then, we consider
Bi = Ai/Di (or Bi = Di \Ai)
and Ci with Ci �NL Di the an-
tecedents of Ai in Ti and we de-
fine B̂i as the type in G “pro-
viding” Bi (following functors)
in Ti.

(c) We prove that: ∀i, j : Bi
= Bj (see 4.2 below)
(d) and: ∀i, j : B̂i
= B̂j (see 4.2 below)
(e) As a consequence, we need 2k + 1 distinct B̂i.

10 D. Béchet and A. Foret

(f) Contradiction: 2k + 1 distinct B̂i are needed with a k-valued grammar
with an appropriate lexicon of 2 words (a and b).

5. Thus ∀k > 0 Ck
NL
= Ck+1

NL (we have also seen in the introduction to the
section that the property is also true for k = 0).

4.2 Details of Proof

– For (4.c): let yce(Xi) denote the center part of the yield with root Xi (this
is i1 for the left subtree with yield ai0bai1 and i2 for the right subtree with
yield ai2bai3), we have ∀i : yce(Bi) + yce(Ci) = i.
Suppose (by contradiction) (i) Bi = Bj , for some i
= j ; from (i) we get
Di = Dj , and Ci � Di then also Ci � Dj , Cj � Di.
Since i
= j, either yce(Bi)
= yce(Bj) or yce(Ci)
= yce(Cj).
Suppose first (ii) yce(Bi)
= yce(Bj) ; from (ii) replacing in Tj , (j
= 0), Bj by
Bi is a parse of a word ...baj′

baj or ajbaj′
b..., where j′ = yce(Bi) + yce(Cj)

this word is not in LNL,k since j′ = yce(Bi) + yce(Cj)
= j this contradicts
the assumption that G has LNL,k as language (for NL).
Suppose instead (ii)’ yce(Ci)
= yce(Cj), replacing in Tj , (j
= 0), Cj by Ci

yields a similar word not in LNL,k with j′ = yce(Bj) + yce(Ci) occurrence of
a between the b and j′
= j, (ii)’ also brings a contradiction.
Therefore (i) is not possible.

– For (4.d): we use the notation X|Y as an abbreviation for X/Y or for Y \X
(functor first). We show ∀i, j : B̂i
= B̂j .
Suppose B̂i = B̂j , one (say Bi) is a head subtype of the other (Bj) then of
the form:

Bj = ...(Bi|D′
1...)|D′

n = Aj |Dj

we then get Aj in the subtree ending in Bi in Ti, which is impossible since
the yield would have three b instead of two.

– For (3) the language description, we consider the k + 1-valued grammar
σ(Gk) where Gk is as above, with substitution σ = x := (S/y)/y, and we
show LNL(σ(Gk)) = LNL,k.

• We show that LNL,k ⊆ L(NL(σ(Gk))) by:
For (i = 0, abb) : ((((S/y)/y), y), y) � S we write F0 = ((S/y)/y).
For (i ≤ k, aibaibai):(...(S/xiyxiyxi−1, x)..., x)︸ ︷︷ ︸

i−1

, y), x)..., x)︸ ︷︷ ︸
i

, y), x)..., x)︸ ︷︷ ︸
i

� S

and let Fi = S/xiyxiyxi−1 denote the corresponding type of a.
For (i > k, aibaibai) : (x, .., (x︸ ︷︷ ︸

i

, xi\S/xiyxi, x)..., x)︸ ︷︷ ︸
i

, y, x)..., x)︸ ︷︷ ︸
i

� S

and let Fi = xi\S/xiyxi denote the corresponding type of b.
• To show that LNL(σ(Gk)) ⊆ LNL,k we consider the following powerset

residuated groupoid on V ∗ (also with unit):
[[S]] = LNL,k, [[y]] = {b} ;
we then calculate the type images of σ(Fi) (see above):
[[σ(F0)]] = {a} (with [[(S/y)]] = {ab})

k-Valued Non-associative Lambek Grammars 11

if (i ≤ k) then [[σ(Fi)]] = {a},
if (i′ > k) then [[σ(Fi′)]] = {b}
hence the language inclusion (Γ � S implies [[Γ]] ⊆ [[S]] = LNL,k).

5 Variants

5.1 A Variant of NL

In this section, we propose an adaptation of GAB deductions to the variant NL∅
(without product). The presentation of NL∅ using GAB∅ and generalized FA∅
structures is original. This is done by substituting NL by NL∅ for the conditions
on the premises of the GAB rules and also by adding two new rules written
FApp∅ and BApp∅ that correspond to a “pseudo-application” of a functor to an
“empty” argument. In the second part of the section, we show how to adapt the
previous hierarchy construction to NL∅ with the use of GAB∅ deductions.

Defining GAB∅ Deductions for NL∅. Like NL, NL∅ can be presented as
a GAB∅ deduction system. This construction enables us to define generalized
functor-argument structures for NL∅ proofs and as elements of languages of
structures. The FA structures have two new unary combinators FApp∅ and BApp∅
that correspond to the application of an empty argument.

Definition 12 (GAB∅ Deduction for NL∅). Generalized AB deductions with
empty applications for NL∅ (GAB∅ deductions) over Tp are the deductions built
from formulas on Tp (the base case) using the following conditional rules (C �NL∅
B must be valid in NL∅ in the first two rules and �NL∅ B must be valid in NL∅
in the last two rules):

A/B C
FApp

A

C B\A
BApp

A
C �NL∅ B valid in NL∅

A/B
FApp∅

A

B\A
BApp∅

A
�NL∅ B valid in NL∅

We now extend the notion of FA structure, written FA∅ so as to include the
case of an empty antecedent (empty argument).

Definition 13 (FA∅ structures). Let E be a set, a FA∅ structure over E is
a tree where each leaf is labelled by an element of E and each internal node
is labelled by FApp (forward application), BApp (backward application), FApp∅
(forward empty application), BApp∅ (backward empty application):

FA∅,E ::= E | FApp(FA∅,E , FA∅,E) | BApp(FA∅,E , FA∅,E)
| FApp∅(FA∅,E) | BApp∅(FA∅,E)

Definition 14 (FA∅ structure of a GAB∅ deduction for NL∅). To each
GAB∅ deduction P for NL∅, we associate a FA∅ structure, written FA∅,Tp(P),
such that each internal node corresponds to the application of a rule in P and is
labelled by the name of this rule and where the leaves are the same as in P.

12 D. Béchet and A. Foret

Definition 15 (GAB∅ Deductions of F �GAB∅ A or Γ �GAB∅ A). Like for
GAB, if F ∈ FA∅,Tp and A ∈ Tp, we say that P is a GAB∅ deduction of F �GAB∅
A when FA∅,Tp(P) = F . If Γ ∈ TTp and A ∈ Tp, we say that P is a GAB∅
deduction of Γ �GAB∅ A when A is the type of the conclusion of P and when
treeTp(FA∅,Tp(P)) = Γ .6

GAB∅ Languages. We can associate to each categorial grammar a language of
FA∅ structures in a similar way as for NL. We write respectively FL∅GAB∅(G),
BLGAB∅(G), and LGAB∅(G), the language of FA∅ structures, the language of well-
bracketed lists of words and the language of strings corresponding to G.

Example 4. With the categorial grammar that is defined in Example 2, we get:

John likes Mary ∈ LGAB∅(G2) ; John likes little Mary ∈ LGAB∅(G2)

because we can build the following deductions:

John︷ ︸︸ ︷
(L\L)\N

BApp∅
N

likes︷ ︸︸ ︷
N\(S/N)

BApp
S/N

Mary︷ ︸︸ ︷
(L\L)\N

BApp∅
N

FApp
S and

John︷ ︸︸ ︷
(L\L)\N

BApp∅
N

likes︷ ︸︸ ︷
N\(S/N)

BApp
S/N

little︷ ︸︸ ︷
L\L

Mary︷ ︸︸ ︷
(L\L)\N

BApp
N

FApp
S

NL∅ and GAB∅ Languages. In fact, there is a strong correspondence between
GAB∅ deductions and NL∅ derivations. In particular with Theorem 3, we show
that the respective string languages and binary tree languages are the same.

Theorem 3. If A is an atomic formula, Γ �GAB∅ A iff Γ �NL∅ A

Corollary 2. BLNL∅(G) = BLGAB∅(G) and LNL∅(G) = LGAB∅(G)

We write, for the rest of the paper, FL∅(G), BL∅(G) and L∅(G) in place of
FLGAB∅(G), BLGAB∅(G) = BLNL∅(G) and LGAB∅(G) = LNL∅(G).

Proof of Γ �GAB∅ A ⇒ Γ �NL∅ A (A does not need to be atomic) : This is
relatively easy because a GAB∅ deduction is just a mixed presentation of an NL∅
proof using a natural deduction part and a NL∅ derivation part (hypotheses on
nodes). We can transform recursively a GAB∅ deduction. Suppose that the last
rule of a GAB∅ deduction corresponding to a FA∅ structure FApp∅(F) is:

P...
A/B

FApp∅
A

We know that �NL∅ B and we have a sub-deduction P that
corresponds to F . P concludes with A/B. By induction hy-
pothesis, the deduction corresponds to a NL∅ derivation of
treeTp(F) �NL∅ A/B.

6 treeTp erases unary combinators FApp∅ and BApp∅ during translation:
treeTp(FApp∅(F)) = treeTp(BApp∅(F)) = treeTp(F).

k-Valued Non-associative Lambek Grammars 13

Now, using two axioms and (/L) for proving (A/B,B) � A and two cuts, we
find that treeTp(FApp∅(F)) = treeTp(F) �NL∅ A.The other possibilities ((BApp∅),
(FApp) or (BApp) as first rule) are very similar and the base case is obvious.

Proof of Γ �NL∅ A ⇒ Γ �GAB∅ A (A atomic) : This property results from an
adaptation to NL∅ of the alternative presentation of NL where contexts are in a
limited form [9]. This presentation, as far as we know, is original. The proof of
the equivalence of NL∅ and this system that we call NL∗

∅ is given as an appendix
to the paper:

Ax
A � A

(C,B) � A
/R∗

C � A/B

(A,C) � B
\R∗

C � A\B

B � A
/R∗

∅∅ � A/B

A � B
\R∗

∅∅ � A\B

D � C Δ[B] � A
/L∗

Δ[(B/C,D)] � A

D � C Δ[B] � A
\L∗

Δ[(D,C\B)] � A

∅ � C Δ[B] � A
/L∗

∅
Δ[B/C] � A

∅ � C Δ[B] � A
\L∗

∅
Δ[C\B] � A

If we have a derivation of Γ �NL∅ A with A atomic using this presentation, the
first rule on the main branch of the derivation must be a left rule. For instance,
for (/L∗

∅), Γ can be written Δ[B/C] and we have a derivation of � C and another
one of Δ[B] � A. We can apply our hypothesis to the second derivation. At this
point, we have a GAB∅ deduction P[B] of Δ[B] �GAB∅ A. In this deduction, we
replace the leaf node corresponding to B by a node corresponding to the con-
clusion of (FApp∅) rule:

B...
P

→

B/C
FApp∅

B...
P

This transformation gives a GAB∅ deduction corresponding
to Δ[B/C] since �NL∅ C. The other three possibilities for
(\L∗

∅), (/L∗) or (\L∗) are similar and give respectively a new
BApp∅, FApp or BApp node and the base case where the
derivation is an axiom is obvious.

5.2 A Strict Hierarchy Theorem for NL∅

For each k ∈ N, we consider the class Ck
NL∅ of languages corresponding to k-

valued NL∅ Lambek grammars (without product). This section proves that this
family also forms a strict hierarchy (if the lexicon has at least 2 elements):

Theorem 4. ∀k ∈ N Ck
NL∅ � Ck+1

NL∅

14 D. Béchet and A. Foret

5.3 Details of Proof

We consider the same languages LNL,k as for NL.

– We first show that LNL,k is also k + 1-valued for NL∅ using the same gram-
mars σ(Gk) as for NL and we show LNL∅(σ(Gk)) = LNL,k.

• the fact that LNL,k ⊆ LNL∅(σ(Gk)) follows from the property that a
sequent valid in NL is also valid in NL∅ ;

• the converse is obtained by the same powerset residuated semi-groupoid
(with unit) as for NL (a model of both systems).

– We then have to show that LNL,k is not k-valued for NL∅.
We proceed similarly as for NL, with the observation that in step 4.(b),
Ai does give two subtrees with one b and is deduced by FApp or BApp,
since if A was deduced by FAppvide or BAppvide, this would contradict the
assumption that Ai is the smallest subtree with a yield including both b.

5.4 A Proof Revisited for AB (Classical)

We consider again the same languages LNL,k as for NL and show how to recover
a hierarchy theorem for the classical system using the former construction.

– We first show that LNL,k is also k + 1-valued for AB using the same gram-
mars σ(Gk) as for AB and we show LAB(σ(Gk)) = LNL,k.

• the fact that LNL,k ⊆ LAB(σ(Gk)) follows from the derivations schemas
shown for NL that only involve AB rules. 7

• the converse is deduced from the fact that a AB deduction is also a NL
deduction: LAB(σ(Gk)) ⊆ LNL(σ(Gk)) = LNL,k.

– We then have to show that LNL,k is not k-valued for AB.
We proceed similarly as for NL where the derivations conditions Ci � Di are
replaced by Ci = Di.

6 Conclusion

The paper studies two related lexicalized grammatical systems: non-associative
Lambek grammars without product with (NL∅) and without (NL) antecedent.
For each system, we prove that the classes of k-valued categorial grammars form
a strict hierarchy of classes of languages. Thus, the notion of k-valued grammars
is relevant for both systems: each k ∈ N defines a particular class of languages.

A second important contribution of the paper consists in defining a sys-
tem of generalized AB deductions and their corresponding generalized functor-
argument structures for NL∅ (without product). This construction enables us to

7 An alternate justification is to start from LAB,k = L(Gk), we get by substitution
LAB,k ⊆ L(σGk) and finally consider the derivation for abb (LNL,k = LAB,k∪{abb}).

k-Valued Non-associative Lambek Grammars 15

define languages of structured sentences as for classical categorial grammars or
for NL languages.

The result can not be adapted directly to other systems like non-associative
Lambek calculus with product or associative Lambek calculus because the proofs
depend on the existence of generalized AB deductions for both systems studied
here and we do not know how to define such structures for those logical systems.
Thus the questions of a strict hierarchy of languages for k-valued grammars are
still open for them.

References

1. Bar-Hillel, Y.: A quasi arithmetical notation for syntactic description. Language
29 (1953) 47–58

2. Lambek, J.: The mathematics of sentence structure. American mathematical
monthly 65 (1958) 154–169

3. Joshi, A.K., Shabes, Y.: Tree-adjoining grammars and lexicalized grammars. In:
Tree Automata and LGS. Elsevier Science, Amsterdam (1992)

4. Gold, E.: Language identification in the limit. Information and control 10 (1967)
447–474

5. Kanazawa, M.: Learnable Classes of Categorial Grammars. Studies in Logic, Lan-
guage and Information. Center for the Study of Language and Information (CSLI)
and The European association for Logic, Language and Information (FOLLI),
Stanford, California (1998)

6. Béchet, D., Foret, A.: k-valued non-associative lambek grammars are learnable
from function-argument structures. In de Queiroz, R., Pimentel, E., Figueiredo,
L., eds.: Electronic Notes in Theoretical Computer Science. Volume 84., Elsevier
(2003) 1–13

7. Lambek, J.: On the calculus of syntactic types. In Jakobson, R., ed.: Structure
of language and its mathematical aspects. American Mathematical Society (1961)
166–178

8. Kandulski, M.: The non-associative lambek calculus. In W. Buszkowski,
W.M., Bentem, J.V., eds.: Categorial Grammar. Benjamins, Amsterdam (1988)
141–152

9. Aarts, E., Trautwein, K.: Non-associative Lambek categorial grammar in polyno-
mial time. Mathematical Logic Quaterly 41 (1995) 476–484

10. Buszkowski, W.: Mathematical linguistics and proof theory. [14] chapter 12 683–
736

11. Moortgat, M.: Categorial type logic. [14] chapter 2 93–177

12. de Groote, P.: Non-associative Lambek calculus in polynomial time. In: 8th Work-
shop on theorem proving with analytic tableaux and related methods. Number
1617 in Lecture Notes in Artificial Intelligence, Springer-Verlag (1999) 128–139

13. de Groote, P., Lamarche, F.: Classical non-associative lambek calculus. Studia
Logica 71(3) (2002) 355–388

14. van Benthem, J., ter Meulen, A., eds.: Handbook of Logic and Language. North-
Holland Elsevier, Amsterdam (1997)

16 D. Béchet and A. Foret

A Proof of the Equivalence of NL∅ and NL∗
∅

Lemma 1. NL∅ and NL∗
∅ are two equivalent logical systems

Proof. Of course because NL∗
∅ rules are restrictions of NL∅ rules, a proof of a

sequent Γ � A in NL∗
∅ is also a proof in NL∅. For the reverse implication, since

we can eliminate cut in NL∅ derivations, we suppose that we have only cut free
NL∅ derivations. In fact, we prove by induction on k ∈ N that we can rewrite a
cut free NL∅ derivation P of a sequent Γ � A containing at most k operators /
and \ into a NL∗

∅ derivation.

– For k = 0, the sequent is B � A with A and B primitive types. P can only
be an axiom and A = B. Thus we have a NL∗

∅ derivation.
– If the last rule P is an axiom, we already have a NL∗

∅ derivation.
– If the last rule is also a NL∗

∅ rule, by induction, we can find a proof of the
premise(s) in NL∗

∅ (the sequents have less than k connectives) and build a
proof in NL∗

∅ of the initial sequent.
– If the last rule of P is (/R) (the case of (\R) is symmetrical) but is not a

NL∗
∅ rule, we have the following proof:

P1...
(Γ,B1) � A1

/R
Γ � A1/B1

Because the rule is not a NL∗
∅ rule, Γ is neither ∅ nor

a type. By induction, there exists a NL∗
∅ derivation P ′

1

of (Γ,B1) � A1. We consider the last rule of P ′
1. The

possible rules are (/L∗), (/L∗
∅), (\L∗) and (\L∗

∅). The four
cases are very similar and we just look here at the first
one, the case where the rule is (/L∗).

We have already mentioned that Γ is
neither ∅ nor a type. At this point
we have the following NL∗

∅ deduction,
where Γ = Δ2[(B2/C2, D2)]:

P2...
D2 � C2

Q2...
(Δ2[B2], B1) � A1

/L∗
(Δ2[(B2/C2, D2)], B1) � A1

Now, we can consider the following NL∅ derivation
(each NL∗

∅ rule is considered as a NL∅ rule inside the
derivation):

Q2...
(Δ2[B2], B1) � A1

/R
Δ2[B2] � A1/B1

By induction hypothesis, there exists a
NL∗

∅ derivation Q′
2 of Δ2[B2] � A1/B1

and we finally have a derivation of Γ �
A that uses NL∗

∅ rules only:

P2...
D2 � C2

Q′
2...

Δ2[B2] � A1/B1
/L∗

Δ2[(B2/C2, D2)] � A1/B1

– If the last rule of P is (/L) (the case of (\L) is symmetrical) but is not a NL∗
∅

rule, we have the following proof, where Γ = Δ1[(B1/C1, Γ1)]:

k-Valued Non-associative Lambek Grammars 17

P1...
Γ1 � C1

Q1...
Δ1[B1] � A

/L
Δ1[(B1/C1, Γ1)] � A

Because the rule is not a NL∗
∅ rule, Γ1 is nei-

ther ∅ nor a type. By induction, there exists a
NL∗

∅ derivation P ′
1 of Γ1 � C1. We consider the

last rule of P ′
1. The possible rules are (/L∗),

(/L∗
∅), (\L∗) and (\L∗

∅) (Γ1 is neither ∅ nor a
type).

The four cases are very similar and we just
look here at the first one, the case where
the rule is (/L∗). At this point we have
the following NL∗

∅ deduction, where Γ1 =
Δ2[(B2/C2, D2)]:

P2...
D2 � C2

Q2...
Δ2[B2] � C1

/L∗
Δ2[(B2/C2, D2)] � C1

Now, we can consider the following NL∅
derivation (each NL∗

∅ rule is considered as
a NL∅ rule inside the derivation):

Q2...
Δ2[B2] � C1

Q1...
Δ1[B1] � A

/L
Δ1[(B1/C1,Δ2[B2])] � A

By induction hypothesis, there
exists a NL∗

∅ derivation Q′
2 of

Δ1[(B1/C1,Δ2[B2])] � A and we
finally have a derivation of Γ � A
that uses NL∗

∅ rules only:

P2...
D2 � C2

Q′
2...

Δ1[(B1/C1,Δ2[B2])] � A
/L∗

Δ1[(B1/C1,Δ2[(B2/C2, D2)])] � A

Dependency Structure Grammars

Denis Béchet1, Alexander Dikovsky2, and Annie Foret3

1 LINA, Université de Nantes, 2, rue de la Houssinière,
BP 92208 F 44322 Nantes cedex 3 France

denis.bechet@univ-nantes.fr

http://www.sciences.univ-nantes.fr/info/perso/permanents/bechet/
2 LINA, Université de Nantes, 2, rue de la Houssinière,

BP 92208 F 44322 Nantes cedex 3 France
alexandre.dikovsky@univ-nantes.fr

http://www.sciences.univ-nantes.fr/info/perso/permanents/dikovsky/
3 IRISA - Université de Rennes 1, Campus Universitaire de Beaulieu,

Avenue du Général Leclerc., 35042 Rennes Cedex France
annie.foret@irisa.fr

Abstract. In this paper, we define Dependency Structure Grammars
(DSG), which are rewriting rule grammars generating sentences together
with their dependency structures, are more expressive than CF-grammars
and non-equivalent to mildly context-sensitive grammars.

We show that DSG are weakly equivalent to Categorial Dependency
Grammars (CDG) recently introduced in [6, 3]. In particular, these de-
pendency grammars naturally express long distance dependencies and
enjoy good mathematical properties.

1 Introduction

Dependency grammars (DGs) are formal grammars, which define syntactic re-
lations between words in the sentences. Following to the tradition going back
to L.Tesnière, the DGs are lexicalized and define the surface syntactic structure
in terms of syntactic valences of individual words and of constraints imposed
on valency saturation, in particular, on licensed feature values and on word or-
der. There are numerous and rather different definitions of DGs (cf. [1, 2]). Most
of them are not generative string or graph-substitution rule based grammars.
This can be simply explained by the absence of substructure markers (nonter-
minals) in the dependency structures. Meanwhile, the formalization of depen-
dency syntax in the form of generative style grammars is an important issue for
various reasons. Firstly, such grammars allow for a straightforward interface re-
lying compositional dependency structure with other compositional structures,
for instance, with constituent structure or with semantic structure of some kind.
Secondly, sometimes they allow for improvement of parsing performance, in par-
ticular, for disambiguiation using meta-rules or other means of compact encoding
of unifiable substructures. Thirdly but not lastly, the rule-based formal gram-
mars have remarkable mathematical properties, which are the source of well

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 18–34, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Dependency Structure Grammars 19

founded and efficient methods of analysis, translation, optimization and seman-
tical interpretation of grammars.

Some definitions of generative dependency grammars can be found in the
literature (cf. [7, 4, 5, 2]). In this paper, we develop the idea put forward in [4, 5]
to distinguish between local and long distance dependencies and to treat them
differently: the former by the composition of right-hand-side dependency trees
of the rules, and the latter by the unique global rule of pairing a long distance
dependency valency with the first available (i.e. the closest not used) dual va-
lency: FA-rule. Recently, this idea was implemented in the form of calculus of
syntactic types: Categorial Dependency Grammars (CDG) generalizing classical
categorial grammars [6, 3]. In this paper, we dramatically simplify the rather
technical definition of polarized dependency grammars of [4, 5] by renouncing the
tree constraints and considering general graph dependency structures. The re-
sulting generalized Dependency Structure Grammars (gDSG) prove to be weakly
equivalent to generalized Categorial Dependency Grammars (gCDG) resulting
from CDG by a similar dependency structure generalization. This equivalence
of two completely different simple and elegant formal models shows the invari-
ant nature of the rule FA. At the same time, this equivalence proves that the
languages in this family have an efficient polynomial parsing algorithm due to
their gCDG definition, and that they enjoy good mathematical properties due
to their gDSG definition.

The paper is organized as follows. In section 2, we introduce the generalized
Dependency Structure Grammars and some their important particular cases. In
the next section, we summarize the main definitions and notation of the Catego-
rial Dependency Grammars and define the generalized Categorial Dependency
Grammars. In section 3, we prove the equivalence of the two definitions. Finally,
in section 4, we establish the results characterizing the expressive power and
main properties of this class of dependency grammars.

2 Dependency Structure Grammars

2.1 Dependency Valency

We follow the proposals in [5, 6] and specify long distance (in particular, non-
projective discontinuous) dependencies by polarized dependency types, which
we call valences. A positive valency specifies the name and the direction of an
outgoing long distance dependency. The corresponding negative valency with
the same name has the opposite direction and specifies the end of this incoming
dependency (we say that the two valences are dual). Long distance dependencies
are specified by correctly paired dual valences. In this pairing, positive valences
needing the corresponding negative valency on the right and negative valences
needing the corresponding positive valency on the right are considered as left
brackets. Symmetrically, the valences needing the corresponding dual valences
on the left are considered as right brackets.

For instance, the first member of the french discontinuous negation ne .. pas
must have the left positive valency (↗n−compound), whereas the second mem-

20 D. Béchet, A. Dikovsky, and A. Foret

ber must have the dual right negative valency (↘n−compound). Together they
define the long distance dependency n−compound.

Formally, we consider a finite set C of elementary dependency types and
introduce four polarities: left and right positive: ↗,↖ (outgoing from left (re-
spectively, right) to right (respectively, left)) and left and right negative: ↙,↘
(incoming from right (respectively, left) to left (respectively, right)). For each
polarity v, there is the unique “dual” polarity v̆: ↗̆ =↘, ↖̆ =↙, ↙̆ =↖,
↘̆ =↗. A polarized valency is an expression (vC), in which v is one of the four
polarities and C ∈ C. For instance, in the phrase upon what dependency theory
we rely, the right positive valency (↖ pre−UPON−obj) of the transitive verb
rely requires the beginning of the long distance dependency pre−UPON−obj re-
lating this verb with the subordinate object dependency theory dislocated from
right to left and headed by the preposition ‘UPON’. The end of this dependency
will be required by the type of the preposition UPON through the dual left
negative valency (↙pre−UPON−obj) 1.

↗C,↖C,↙C and ↘C denote the corresponding sets of polarized valences.
For instance, ↗ C = {(↗ C) | C ∈ C} is the set of left positive valences.
V +(C) =↗C ∪ ↖C is the set of positive valences, V −(C) =↘C ∪ ↙C is
the set of those negative.

2.2 Generalized Dependency Structures

Definition 1. Potentials. A potential is a string Γ ∈ P=df (V +(C)∪V −(C))∗.
Let Γ = Γ1(vC)Γ2(v̆C)Γ3 and Γ ′ = Γ1Γ2Γ3 be two potentials such that

(vC) = (↗ A), (v̆C) = (↘ A) or (vC) = (↙ A), (v̆C) = (↖ A). We say
that (vC) is first available (FA) for (v̆C) in Γ and both are neutralized in Γ ′

(denoted Γ�FAΓ
′) if Γ2 has no occurrences of (vC) and (v̆C). This reduction

of potentials �FA is terminal and confluent. So each potential Γ has a unique
FA-normal form 2 denoted [Γ]FA. Therefore, we can define the product � of
potentials as follows: Γ1 � Γ2=df [Γ1Γ2]FA.

Clearly, this product is associative. So we obtain the monoid of potentials
P = (P,�) under the product � with the unit ε.

Definition 2. Generalized dependency structures. Let W and N be two
disjoint sets of terminals and nonterminals. A generalized dependency structure
(gDS) over W ∪N is a graph δ with linearly ordered nodes in which:

– the nodes are labeled by symbols in W ∪N,
– one maximal connected component D0 and one node n0 ∈ D0 are selected,

called respectively head component and head of δ 3. The decomposition of δ
into maximal connected components (called below just components) will be
denoted by δ = {D0, D1, . . . , Dk}.

1 See [6] and [3] for more details.
2 Irreducible potential.
3 We visualize D0 underlining its head n0 if δ has at least two components.

Dependency Structure Grammars 21

Due to the linear order, δ determines the string of node labels w(δ) ∈ (W ∪
N)+ called framework of δ. We will also say that δ is a gDS of w(δ). In particular,
each component Di is a gDS of the corresponding string w(Di).

Example 1. For instance, the following graphs are dependency structures:

δ11 : NP RC δ12 : NP

subj

V Pmod Vmod Vtr UPON

inf−obj prep−obj

δ13 :

a cδ14 : b δ15 : a B c bB

gDS δ11 has two components, the second is head. gDS δ12, δ13 are dependency
trees. The head of δ14 is B and the head of δ15 is b.

Definition 3. Composition of gDS. Let δ1 = {D0, D1, . . . , Dk} be a gDS. Let
a nonterminal A have an occurrence in δ1: w(δ1) = xAy and δ2 be a gDS with
the head n0. Then the composition of δ2 into δ1 in the selected occurrence of A,
denoted δ1[A\δ2], is the gDS δ resulting from the union of δ1 and δ2 by unifying
A and n0 and by defining the order and labeling by the string substitution of
w(δ2) in the place of A in w(δ1). Formally:

1. nodes(δ)=df (nodes(δ1) − {A}) ∪ nodes(δ2).
2. arcs(δ)=df arcs(δ2) ∪ (arcs(δ1) − {d ∈ arcs(δ1)||∃n(d=(A, n)∨d= (n,A))})

∪{(n0, n)||∃n((A, n) ∈ arcs(δ1))} ∪ {(n, n0)||∃n((n,A) ∈ arcs(δ1))}.
3. The order of nodes(δ) is uniquely defined by equation w(δ) = xw(δ2)y.
4. The head of δ is the head of the component resulting from D0.

δ = δ0[A1, . . . , An\δ1, . . . , δn] will denote the result of simultaneous composition
of DS δ1, . . . , δn into A1, . . . , An in δ0.

Example 2. The following gDS are compositions of the gDS in example 1:

Vmod Vtr UPON
� �

prep−objinf−obj

δ21 :

δ22 :

NP
�

subj

Vmod Vtr UPON
� �

prep−objinf−obj

NP
�

subj

NP

δ24 : a a B c b c b
� �

δ23 : a a B c b c b
�� � �

��

Namely, δ21 = δ12[VPmod\δ13], δ22 = δ11[CR\δ21], δ23 = δ14[B\δ14], δ24 =
δ14[B\δ15].

22 D. Béchet, A. Dikovsky, and A. Foret

2.3 Grammar Definition

Definition 4. A generalized Dependency Structure Grammar (gDSG)
is a system G = (W,N,C, S,R), where W,N and C are finite sets of terminals
(words), nonterminals and elementary types, S ∈ N is the axiom and R is a finite
set of rules. Each rule r consists of a substitution s(r) of the form A→ δ, where
A ∈ N and δ is a gDS, and of potential assignments of the form ω(r, a)[Γ],
where ω(r, a) is an occurrence of a terminal a in δ and Γ is a (unique) potential
in normal form 4 assigned to this occurrence.

For each substitution A→ δ, A→ w(δ) is the corresponding framework rule.
The framework cf-grammar f(G) consists of all framework rules of G.

Definition 5. Derivations. In definition 4, s is a many-to-one relation be-
tween the rules of G and f(G). It is naturally extended to trees. A terminal
derivation tree 5 T0 of f(G) corresponds through s to a composition tree T of G
if T results from T0 by assigning to each non-terminal node n a rule r(n) ∈ R
such that s(r) is applied to n in T0.

For each node n of a composition tree T, we define its potential π(T, n) and
gDS gDS(T, n) induced by n in T as follows:

1. Let n = ai ∈ W be a terminal node of T, n′ be its parent node, ω(r, ai) be
the occurrence of ai in the right-hand side of rule r = r(n′) and ω(r, ai)[Γ] be its
potential assignment. Then gDS(T, n) = ai and π(T, n) = Γ. We suppose that
each valency v ∈ Γ keeps the position i of ai in the generated string w (denoted
vi). The positions are needed only for gDS construction and can be neglected if
the gDS are not pertinent.

2. Let n = A ∈ N be a node in T with assigned rule r(n) = (A → δ), whose
framework rule is A→ α1 . . . αk. This means that n has in T k sons: n1, . . . , nk

corresponding to α1, . . . , αk (in this order). Let the potentials and the gDS of the
sons be defined as: π(T, ni) = Γi and gDS(T, ni) = δi, 1 ≤ i ≤ k. Then

π(T, n)=df Γ1 � . . .� Γk

gDS(T, n)=df δ[α1 . . . αk\gDS(T, n1) . . . gDS(T, nk)] ∪Δn,

where Δn is the set of all long distance dependencies (ai
C←− aj) or (ai

C−→ aj)
between terminals ai, aj , induced by neutralization of dual valences (↙C)i, (↖
C)j (respectively (↗C)i, (↘C)j).

The maximal length of potentials π(T, n) in T is called valency deficit of T
(denoted σ(T)).

A composition tree T is derivation tree if the potential of its root S is neutral:
π(T, S) = ε. We set G(D,w) if there is a derivation tree T of G from the axiom
S, such that D = gDS(T, S) and w = w(D).

4 For instance, the rule r = (A → a[↘D1 ↗D2] B) has the substitution s(r) = (A →
a B) and the assignment ω(r, a)[↘D1 ↗D2]. We omit assignmens ω(r, a)[ε].

5 I.e., in which all leaves are terminal.

Dependency Structure Grammars 23

Δ(G) = {D | ∃w ∈W+ G(D,w)} is the gDS-language generated by G.
L(G) = {w ∈W+ | ∃D G(D,w)} is the language generated by G.

Intuitively, the derivation trees are induced by the framework grammar deriva-
tion trees, which correspond through s to composition trees. Only those composi-
tion trees derive gDS, in which all valencies are neutralized. Each derivation step
can neutralize some dual dependency valences, and in this way, establish long
distance dependencies between the words to which these valences are assigned.

Example 3. For instance, the gDSG

G1 :
a[↙a] S ||

b[↖a] A c || b[↖a]

S → cA

A →
generates the language L(G1) = {anbncn || n ≥ 1} and the gDS-language
gDS(G1) = {d(3)

abc || n ≥ 1}, where e.g., d(3)
abc has the form:

a a b b b c c cad
(3)
abc :

The gDSG can generate dependency structures, which are arbitrary ordered
graphs and not dependency trees. Even in the case, where the gDS in the rules
have only dependency tree components, the generated structures may have cy-
cles as it is the case of the following trivial gDSG:

S → a[(↙A)(↗B)] b[(↘B)(↖A)] c.

If we want that the grammars generate only dependency trees, then some addi-
tional constraints must be imposed.

2.4 Dependency Structure Grammars

We show the constraints, which guarantee only that the gDSG have the most
important property of dependencies: the uniqueness of the governor. In partic-
ular, these constraints do not guarantee connectedness and cycle-freeness. The
resulting Dependency Structure Grammars represent a reasonable compromise
between acceptable divergence from classical dependency trees on the one hand,
and simplicity of grammar rules and elimination of excess technical details on
the other hand.

We split the set of nonterminals N in two parts: N = N+ ∪ N−, N+ ∩
N− = ∅. N− corresponds to dependency structures with negative potential,
and N+ embodies the inherited through derivation impossibility of negative
valences.

24 D. Béchet, A. Dikovsky, and A. Foret

Definition 6. Dependency structures. Let us call an oriented graph P unique
governor if each node in P is entered by at most one arrow.

A gDS δ = {D0, D1, . . . , Dm} is a dependency structure (DS) if it is a unique
governor graph and if each nonterminal B labelling a dependent node 6 is posi-
tive: B ∈ N+.

Clearly, the composition preserves such dependency structures.

Proposition 1. For any DS δ, δ1, . . . , δk, δ[A1, . . . , An\δ1, . . . , δk] is a DS.

Definition 7. We call a potential Γ non-negative if Γ ∈ (V +(C))∗, neutral if
Γ = ε and definitely negative if Γ ∈ (V +(C))∗V −(C)(V +(C))∗.

Definition 8. A Dependency Structure Grammar (DSG) is a gDSG G = (W,N,C,
S, R), in which N = N+ ∪N−, N+ ∩N− = ∅, S ∈ N+ and:

(c1) in potential assignments ω(r, a)[Γ], Γ is either neutral, or non-negative,
or definitely negative;

(c2) in substitutions r = (A → {D0, D1, . . . , Dm}), if a terminal a ∈ W labels
a non-head node of a component of Di or it labels the head n0 of D0 and
A ∈ N+, then only a non-negative potential Γ can be assigned to a through
an assignment rule ω(r, a)[Γ];

(c3) if in a substitution A → δ A ∈ N+ and the head n0 of δ is labeled with a
nonterminal B, then B ∈ N+.

We denote the structure language of a DSG G by DS(G). This notation is
justified by the following proposition.

Proposition 2. If G is a DSG, then gDS(G) contains only terminal DS.

Proof. Proposition 2 is immediately implied by the following lemma.

Lemma 1. Let T be a derivation tree of a gDS δT with the head node ah. Then:

1. If T is a derivation tree from a positive nonterminal A ∈ N+, then ah has
no negative valences.

2. For all nodes n in T and for each terminal node a of gDS(T, n), if among
the valences assigned to a there is one not neutralized negative valency v,
then a is not dependent in gDS(T, n).

Can be proven by induction on the structure of the derivation tree T. �

3 Categorial Dependency Grammars

In this section, we summarize the main notions related with the Categorial De-
pendency Grammars needed to define some their generalization.

6 I.e. a node, into which a dependency enters.

Dependency Structure Grammars 25

3.1 Dependency Types

Categorial dependency grammars are simply related with classical categorial
grammars. They use “curried” variants of first order types: [l1\ . . . \m/ . . . /r1].
In these types, all subtypes: left argument (li), right argument (ri) and main (m)
can be elementary or polarized. The elementary subtypes define local dependen-
cies and the polarized subtypes define long distance dependencies. In particular,
elementary left argument type l corresponds to the beginning of the local depen-
dency l outgoing to the left, whereas main subtype l corresponds to the end of
incoming local dependency l. As in DSG, the polarized subtypes represent long
distance dependency valences. They have the same meaning. There is however a
fundamental difference between the two formal models. In DSG, the linear order
is directly defined by the right-hand-side gDS of rules. Categorial dependency
grammars are completely lexicalized. To define a linear order on long distance
dependencies, they use so called “anchored” valences. For instance, in the sen-
tence It was yesterday that they had this meeting the discontinuous dependency
it−cleft starting from the conjunction that must enter the expletive pronoun
It in the position immediately preceding the main verb. To express this re-
quirement, two adjacency markers: # and
 are applied to dependency valences.
Assigning to It the type #(↙ it−cleft) one requires that the long distance de-
pendency it−cleft must enter It from the right and that the position of It must
be anchored to some host word. To make was the host word for It, the type
[
(↙ it−cleft)\S/subj/circ] is assigned to was. This type requires that the end
of the long distance dependency it−cleft must immediately precede was (i.e. be
anchored on its left), that two local dependencies subj and circ must start from
was to its right and that was becomes the root of the dependency tree if the
three requirements are met. Below we summarize the definitions of dependency
types and type calculus and address the reader to [6, 3] for more details.

We call syntactic types categories. Let C be a nonempty set of elementary
categories. Elementary categories, e.g. subj, inf-subj, dobj, det, modif, etc. are
dependency names. For instance, subj is the dependency, whose subordinate is
a noun or a pronoun in the syntactic role of the subject and whose governor
is a verb. Elementary categories may be iterated. For a ∈ C, a∗ denotes the
corresponding iterative category. For instance, modif∗ is the type of iterated
category modif . For a set X ⊆ C, X∗ = {C∗ | C ∈ X}. The elementary and
iterated categories are local.

The negative valences in V −(C) do not constrain the position of the end of
the required long distance dependency. So they are called loose.

To specify the positions of the ends of long distance dependencies, we use two
markers: # (anchor) and
 (host). For each negative valency vC ∈ V −(C), the
expressions #(vC) and
(vC) are the corresponding anchor and host valences.
We distinguish left-argument and right-argument host valences and the corre-
sponding left and right positioned anchor valences:

Hostl(C)=df {
l(α) | α ∈ V −(C)},
Hostr(C)=df {
r(α) | α ∈ V −(C)},
Host(C)=df Host

l(C) ∪Hostr(C),

Ancl(C)=df {#l(α) | α ∈ V −(C)},
Ancr(C)=df {#r(α) | α ∈ V −(C)},
Anc(C)=df Anc

l(C) ∪Ancr(C).

26 D. Béchet, A. Dikovsky, and A. Foret

The sets Hostl(C), Hostr(C), Ancl(C) and Ancl(C) are supposed to be disjoint.

Definition 9. The set Cat(C) of categories is the least set such that:

1. C ∪ V −(C) ∪Anc(C) ⊂ Cat(C).
2. For C ∈ Cat(C), A1 ∈ (C ∪ C∗ ∪ Hostl(C) ∪ ↖ C ∪ ↘ C) and A2 ∈

(C ∪ C∗ ∪ Hostr(C) ∪ ↗ C ∪ ↙ C), the categories [A1\C] and [C/A2]
also belong to Cat(C).

Categories, which cannot have left arguments in ↘C and right arguments in
↙ C are called dependency categories (denoted DCat(C)); those which do not
have subcategories in V −(C)∪V +(C), are called continuous dependency categories
(denoted CCat(C)).

We suppose that the constructors \, / are associative. So every complex category
α can be presented in the form α = [Lk\ . . . L1\C/R1 . . . /Rm].

For instance, [
l(↙clit−dobj)\subj\S/aux] is one of possible categories of an
auxiliary verb in French, which defines it as the host word for a cliticized direct
object, requires a local subordinate subject on its left and a local subordinate
through dependency aux on its right.

3.2 Definition of Categorial Dependency Grammars

Definition 10. A generalized Categorial Dependency Grammar (gCDG) is a sys-
tem G = (W,C, S, δ), where W is a finite set of words, C is a finite set of
elementary categories containing the selected category S, and δ - called lexicon
- is a finite-set-valued function on W such that δ(a) ⊂ Cat(C) for each word
a ∈W. G is a Categorial Dependency Grammar (CDG) if δ(W) ⊆ DCat(C).

We index categories by their positions in a string of categories related by G with
a given sentence w = a1 . . . an : αi is a (positioned) category of a dependency
structure with the root position ai. As in gDSG, these indices serve only to define
dependency structures.

Definition 11. A D-sentential form of a sentence w = a1 . . . an ∈ W+ is a
pair (Δ,Γ), where Δ is an oriented labelled graph with the set of nodes V =
{a1, . . . , an} and a set of arcs labeled by elementary categories, and Γ is a
nonempty string of positioned categories.

An initial D-sentential form of w = a1 . . . an is an expression ((V, ∅), C1
1 . . .

Cn
n), in which Ci ∈ δ(ai) for all 1 ≤ i ≤ n. D-sentential forms (Δ,Sj) are

terminal.

gCDG derivations are proofs in the following dependency calculus.

Definition 12. Sub-commutative dependency calculus (only left constructor
rules Rl are presented; the corresponding right constructor rules Rr are similar).

Dependency Structure Grammars 27

Local dependency rule:

Ll. ((V,E), Γ1C
i[C\β]jΓ2) � ((V,E ∪ {ai

C←− aj}), Γ1β
jΓ2) for C ∈ C.

Iterative dependency rules:

Il. ((V,E), Γ1C
i[C∗\α]jΓ2) � ((V,E ∪ {ai

C←− aj}), Γ1[C∗\α]jΓ2) for C ∈ C.
Ωl. ((V,E), Γ1[C∗\α]iΓ2) � ((V,E), Γ1α

iΓ2) for C ∈ C.

Argument valency rule:
Vl. ((V,E), Γ1[β\α]iΓ2) � ((V,E), Γ1β

iαiΓ2), where β is a host or polarized
valency.

Anchored dependency rule:
Al. ((V,E), Γ1#l(α)i
l(α)jΓ2) � ((V,E), Γ1α

iΓ2) for #l(α) ∈ Ancl(C) and

l(α) ∈ Hostl(C).

Sub-commutativity rule:
Cl. ((V,E), Γ1 C

iαj Γ2) � ((V,E), Γ1 α
jCi Γ2) if α ∈ (V −(C) ∪ V +(C) and

(i) C ∈ Host(C) or
(ii) C ∈ Cat(C) and C has no subexpressions α,#(α),
(α), and ᾰ.

Long distance dependency rule:

Dl. ((V,E), Γ1(↙C)i(↖C)jΓ2) � ((V,E ∪ {ai
C←− aj}), Γ1Γ2) for

(↙C) ∈↙C and (↖C) ∈↖C.

The one-step provability relation in this calculus is denoted by �R, where R
is one of the rules above, or just by �, if R is irrelevant. The transitive closure
of this relation is denoted by �∗ .

Besides this sub-commutative calculus, we consider its restriction to the con-
tinuous categories in CCat(C) with the additional equivalence #α(t) ≡
α(t)
and to the first three rules L, I and Ω. We call this restricted calculus projective.

The one-step provability relation in the projective calculus is denoted by �R
p

(or just �p). Its transitive closure is denoted by �∗
p .

We see that rule L is a direct analogue of the classical elimination rule. Rules
I and Ω extend L to the iterative categories. In projective calculus, anchor
and host types are not distinguished, e.g. [α/
r(d)]#r(d) �p α. Particular are
the polarized valences’ rules. Rule V extracts non-local valences from complex
categories. Rule C moves the valences in the indicated directions towards the
first available valency, to which one can apply rules A or D. Rule D adds a
long distance dependency C, when two loose dual valences with the same name
C become adjacent. The crucial difference between gCDG and CDG is that
due to negative argument subtypes available in gCDG, the rule D can violate
the uniqueness of the governor, which is impossible in CDG, where non-local
argument subtypes are positive or host. Rule A verifies that an anchored valency
#(α) has become adjacent to the corresponding host valency
(α), consumes
(α)
and looses �(α). Intuitively, this means that α is well-placed with respect to the

28 D. Béchet, A. Dikovsky, and A. Foret

category with the corresponding host argument. If this test succeeds, α becomes
available to the long distance dependency rule D. We address the reader to [6, 3]
for linguistic examples.

Definition 13. Let G = (W,C, S, δ) be a gCDG. A gDS D is assigned by G to a
sentence w (denoted G(D,w)) if (Δ0, Γ0) �∗ (D,Sj) for some initial sentential
form (Δ0, Γ0) of w and some 1 ≤ j ≤ n.
The D-language generated by G is the set of gDS gDS(G)=df {D | ∃w G(D,w)}.
The language generated by G is the set of sentences L(G)=df {w | ∃D G(D,w)}.

Proposition 3. 1. For each CDG G, gDS(G) contains only DS.
2. If gCDG is projective, it is a CDG and DS(G) contains only projective DS.

We denote by L(gCDG),L(CDG) and L(pCDG) the families of languages
generated by gCDG, CDG and projective CDG. If G is a CDG, then we use
notation DS(G) in the place of gDS(G).

gCDG have the following fundamental property established in [3].

Definition 14. Local projection ‖γ‖l of γ ∈ Cat(C)∗ is defined as follows:

11. ‖ε‖l = ε; ‖Cγ‖l = ‖C‖l‖γ‖l for C ∈ Cat(C) and γ ∈ Cat(C)∗.
12. ‖C‖l = C for C ∈ C ∪ C∗ ∪Anc(C).
13. ‖C‖l = ε for C ∈ V +(C) ∪ V −(C).
14. ‖[α]‖l = ‖α‖l for all α ∈ Cat(C).
15. ‖[a\α]‖l = [a\ ‖α‖l] and ‖[α/a]‖l = [‖α‖l/a] for a ∈ C ∪ C∗ ∪Host(C)

and α ∈ Cat(C).
l6. ‖[(↖a)\α]‖l = ‖[α/(↗a)]‖l = ‖α‖l for all a ∈ C and α ∈ Cat(C). Valency

projection ‖γ‖v of a string γ ∈ Cat(C)∗ is defined as follows:
v1. ‖ε‖v = ε; ‖Cγ‖v = ‖C‖v‖γ‖v for C ∈ Cat(C) and γ ∈ Cat(C)∗.
v2. ‖C‖v = ε for C ∈ C ∪ C∗.
v3. ‖C‖v = C for C ∈ V +(C) ∪ V −(C).
v4. ‖#(C)‖v = C for C ∈ V −(C).
v5. ‖[α]‖v = ‖α‖v for all [α] ∈ Cat(C).
v6. ‖[a\α]‖v = ‖[α/a]‖v = ‖α‖v for a ∈ C ∪ C∗ ∪Host(C).
v7. ‖[a\α]‖v = a ‖α‖v, if a ∈ V +(C).
v8. ‖[α/a]‖v = ‖α‖v a, if a ∈ V +(C).

Definition 15. For a category C = [αD∗\β], the categories [αβ], [αD\β],
[αD\D\β], [αD\D\D\β], etc. are realizations of C (similar for right iterative
categories). To obtain a realization of a string of categories γ ∈ Cat(C)+, each
of its elements having iterative subcategories should be replaced by one of its
realizations. Let R(γ) denote the set of all realizations of γ.

Theorem 1. Let G = (W,C, S, δ) be a gCDG. x ∈ L(G) iff there is a string of
categories α ∈ δ(x) such that for some its realization γ ∈ R(α):

1. ‖γ‖l �∗
p S, 2. [‖γ‖v]FA = ε.

In fact, this property is proven for CDG but the proof holds for gCDG too.

Dependency Structure Grammars 29

Corollary 1. [3] There is a polynomial time parsing algorithm for gCDG.

4 Expressive Power of gDSG

Definition 16. A gDSG G = (W,N,C, S,R) is in generalized Greibach normal
form (GNF) iff for each rule A→ δ ∈ R, w(δ) ∈WN∗.

Remark 1 The condition w(δ) ∈ WN∗ is the conjunction of three conditions:
(i) all w(δ) are not empty, (ii) the first symbol of w(δ) must be a terminal,
(iii) all other symbols in w(δ) must be non-terminals.

The first condition is always true for gDSG and the third one is not difficult
to obtain because it is always possible to introduce, for each terminal, a new non-
terminal that replaces it in the right members of the rules, where the condition
is not true. Thus, only the second condition is not trivial.

Proposition 4. For any gDSG G, a weakly equivalent gDSG G′ in generalized
GNF can be constructed.

Proof. Let G = (W,N,C, S,R) be a gDSG. As we are interested only in weak
equivalence, we can chose arbitrary heads and dependencies to transform the
frame rules to the form N →W (W ∪N)∗. We follow the Greibach’s construction
and proceed by induction on the number of critical non-terminals, i.e. the non-
terminals occurring in the first position of right-hand-sides of framework rules:

n = #({A ∈ N || ∃(B → δ) ∈ R (w(δ) ∈ A(W ∪N)∗})).

– In the case of n = 0, we already have a gDSG in generalized GNF.
– If n > 0, let A be one of these n non-terminals. Let A′ be a new non-

terminal and N ′=df N ∪ {A′}. Let us classify the rules of R corresponding
to the following framework rules:

A→ A (1)
A→ B1 · · ·Bk k ≥ 1, B1 · · ·Bk ∈ (W ∪N)+, B1 �= A (2)
A→ AB1 · · ·Bk k ≥ 1, B1 · · ·Bk ∈ (W ∪N)+ (3)
C → AB1 · · ·Bk k ≥ 0, B1 · · ·Bk ∈ (W ∪N)∗, C ∈ N,C �= A (4)

For 1 ≤ i ≤ 4, we denote R(i) ⊂ R the rules in the class (i). The rules in
R(3) and R(4) need to be modified. We define successively:

RA = R(2) ∪ {A→ δA′ || A→ δ ∈ R(2)}
RA′ = {A′ → δ[A\ε] || A→ δ ∈ R(3)} ∪ {A′ → δ[A\ε]A′ || A→ δ ∈ R(3)}
RC = {A′ → δ[A\δ′] || C → δ ∈ R(4) ∧A→ δ′ ∈ RA}
R′ = (R−R(1) −R(2) −R(3) −R(4)) ∪RA ∪RA′ ∪RC

G′ = (W,N ′,C, S,R′)

30 D. Béchet, A. Dikovsky, and A. Foret

The framework languages of G and G′ are the same. Let T be a derivation tree of
a string w in G. There exists a derivation tree T ′ of w in the framework grammar
of G′. In T , each leaf is associated to a potential. Let us keep in T ′ the same
potentials assignment as in T and extend the frame rules to the corresponding
dependency structure rewriting rules. Then T ′ will become a composition tree in
G′. Given that the product � is associative, in the transformed tree T ′ exactly
the same potential is calculated. So T ′ is a derivation tree for w in G′, which
proves that w ∈ L(G′) and L(G) ⊆ L(G′). The reverse inclusion is similar, so
G and G′ are weakly equivalent. Now, the induction hypothesis can be applied
because the critical non-terminals of G′ are fewer than those of G. �

Theorem 2. gDSG and gCDG are weakly equivalent.

Proof. (⇒) To prove that L(gDSG) ⊆ L(gCDG), we use a gDSG in gener-
alized GNF. Let G = (W,N ′,C, S,R′) be such a gDSG. We will simulate G
by the gCDG G′ = (W,C, S, λ), where the lexicon λ is computed from G as
follows.

Let r = (A → δ) ∈ R be a rule of G, whose framework rule has the form
A→ aB1 · · ·Bi, a ∈W, and let ω(r, a)[Γ] be a potential assignment. Keeping in
mind the associativity of potential product and the sub-commutativity rule C,
we can group together similar valences and represent Γ in the form:

Γ ≡ (↖ C1) · · · (↖ Cj)(↙ D1) · · · (↙ Dk)(↘ E1) · · · (↘ El)(↗ Fn) · · · (↗ Fn).

To these rules we associate in λ(a) the category:

(↖ C1)\ · · · \(↖ Cj)\(↙ D1)\ · · · \(↙ Dk)\A/B1/ · · ·
· · · /Bi/(↘ E1)/ · · · /(↘ El)/(↗ Fn)/ · · · /(↗ Fn).

The equivalence L(G) = L(G′) is relatively evident 7. The first part L(G) ⊆
L(G′) holds because a derivation tree of any string w ∈ L(G) uniquely determines
a sequence of reduction steps of categories assigned to w by G′. Indeed, the
potential of a leaf of the derivation tree constitutes the part of the category
determining the same long distance dependencies of a as those defined by the
rule r. The rest of the category is uniquely determined by the rule r. One should
first eliminate all long distance dependency valences (which is always possible),
and then apply the category to its argument subtypes. This application is also
possible because it directly simulates the application of the framework rule w(r).
This means that, using this tactics, the sequence of categories assigned by λ to
the string w following the structure of the derivation tree of w in G will be
reduced to S.

The converse inclusion L(G′) ⊆ L(G) is similar and follows from the fact that
in a reduction to S of categories assigned by the lexicon λ, we can always start

7 This construction cannot serve to prove the strong equivalence, because in the case,
when the head valency is negative, the resulting type has a negative argument sub-
type, which is impossible in CDG.

Dependency Structure Grammars 31

with reductions of long distance dependencies and continue with reductions of
local dependencies.

(⇐) The converse relation between the two families is stronger: for each gCDG
G1 = (W,C, S, λ), we can construct a gDSG G2 = (W,N,C, S,R) such that
Δ(G2) = Δ(G1). This strong simulation is implied by theorem 1. Namely, the
grammar G2 is defined as the union

⋃
a∈W,C∈λ(a)

M(a,C), where each module

M(a,C) is defined as follows.
Let us suppose for simplicity that in ‖C‖l = [α\B/β] α �= ε and β = ε. The

three other cases are similar. Then α = Bn\ · · · \B1 for some n > 0. In this case,

M(a,C)=df {r(0), r(1), . . . , r(n), r(n+1)},

where r(0) = (MC → Λ M
(1)
aC Λ), MC = B, if B �= ε and MC = E otherwise,

r(n+1) = (M (n+1)
aC → a[‖C‖v]), Λ ∈ {E, ε}, and the resting rules r(i) are as fol-

lows:

Bi Λr(i) = (M (i)
aC → Λ M

(i+1)
aC)

if Bi is not iterative and

Bi Λr(i) = (M (i)
aC → Λ M

(i)
aC || Λ M

(i+1)
aC)

if it is iterative. In this construction, E and M (i)
aC are new pairwise different non-

terminals different from all types. The equality Δ(G2) = Δ(G1) immediately
follows from theorem 1. �

Without constraint that gDS must be trees, the main result of [5] can be
easily carried over to gDSG.

Theorem 3. If in a gDSG G the valency deficit σ(T) of correct terminal deriva-
tion trees is uniformly bounded by a constant c then G generates a CF-language.

Proof. We can simply consider nonterminals A[Γ], where Γ is a potential of the
size not exceeding c, and define the rules so that for each node n of a complete
derivation tree T its label should be A[π(T, n)], A being the original nonterminal
label of n. Clearly, S[ε] becomes the axiom. �

Using the classical constructions, one can easily prove that L(gDSG) is an
abstract family of languages.

Proposition 5. L(gDSG) is closed under ε-free homomorphism, inverse ho-
momorphism, intersection with regular sets, union, concatenation and +.

Seemingly, L(gDSG) is not closed under intersection and complementation.

32 D. Béchet, A. Dikovsky, and A. Foret

Conjecture. The copy language Lcopy = {wcw | w ∈ {a, b}∗} cannot be gener-
ated by a gDSG.

Meanwhile, the complement of Lcopy is linear and so belongs to L(gDSG). It
is also well-known that Lcopy is generated by a basic TAG. On the other hand,
in [6, 3] it is proven that each language L(m) = {d0a

n
0d1a

n
1 . . . dma

n
mdm+1|n ≥ 0}

is generated by a CDG. So they can be generated by gCDG. Meanwhile, start-
ing from m = 5, the languages L(m) cannot be generated by basic TAG. The
languages L(m) are mildly context-sensitive [9]. This leads to the question of
comparison of mildly CS languages and gDSG-languages. Seemingly, the two
families are incomparable. Indeed, there is another strong conjecture that the
mildly CS grammars cannot generate the language MIX of Emmon Bach con-
sisting of all permutations of words anbncn, n > 0:

MIX = {w ∈ {a, b, c}+ | |w|a = |w|b = |w|c}.
At the same time, we show that MIX is generated by a CDG.

Theorem 4. There is a CDG generating MIX.

Proof. We can construct a CDG Gmix with only loose valences and with only
anchored valences. We show the former, because it is simpler:

TABLE OF CATEGORY ASSIGNMENTS
left right middle
a �→ [↖B \ ↖C \ S] a �→ [S /↗C /↗B] a �→ [↖B \ S /↗C], [↖C \ S /↗B]
a �→ [↖B \ ↖C \ S \ S] a �→ [S \ S /↗C /↗B] a �→ [↖B \ S \ S /↗C], [↖C \ S \ S /↗B]
b �→ ↙B b �→ ↘B
c �→ ↙C c �→ ↘C

Inclusion (⊆). L(Gmix) ⊆MIX.
Let us consider the following commutative group interpretation of non-iterative
categories (where kl,x, kr,x are new symbols for each elementary x):

< p >= p for elementary p,
< [x \ y] >=< x >−1< y >, < [y / x] >=< y >< x >−1,
<↙x >= k−1

l,x , <↘x >= k−1
r,x, <↖x >= kl,x, <↗x >= kr,x.

Fact. Γ � S implies < Γ >= S. (By evident induction on the derivation length.)

Being applied to the categories of Gmix, this interpretation shows that the num-
ber of a, b and c is the same in all w ∈ L(Gmix).

Inclusion (⊇). MIX ⊆ L(Gmix).
Let us consider a word w0 ∈ MIX. We construct a canonical assignment of
categories to the occurrences of a, b, c in w0 as follows.

Dependency Structure Grammars 33

Canonical assignment algorithm CCA
w := w0;
WHILE w �= ε
DO

Phase I. Basic triangulation
FIND in w the leftmost occurrences α, β such that:
w = u1αu2βu3, where u2 ∈ c∗, α �= β, α, β ∈ {a, b};
FIND in w the occurrence γ of c closest to α, if α = a, else closest to β;
IF the selected a ∈ {α, β} is leftmost in w0

THEN X := S;
ELSE X := S\S
END;
CASE

w = v1γv2αv3βv4 ∧ α = a → α := [↖C\X/↗B]; γ := ↙C;β := ↘B;
w = v1γv2αv3βv4 ∧ α = b → β := [↖B\↖C\X]; γ := ↙C;α := ↙B;
w = v1αv2γv3βv4 ∧ α = a → α := [X/↗B/↗C]; γ := ↘C;β := ↘B;
w = v1αv2γv3βv4 ∧ α = b → β := [↖C\↖B\X]; γ := ↙C;α := ↙B;
w = v1αv2βv3γv4 ∧ α = a → α := [X/↗C/↗B]; γ := ↘C;β := ↘B;
w = v1αv2βv3γv4 ∧ α = b → β := [↖B\X/↗C]; γ := ↘C;α := ↙B

END;
Phase II. Elimination
w := v1v2v3v4

END

It is easy to see that CCA exits successfully the loop on the condition w = ε
for each w0 ∈ MIX. Being applied to w0, CCA defines the canonical assign-
ment of categories CCA(w0). The inclusion MIX ⊆ L(Gmix) is implied by the
following fact.

Fact. CCA(w0) � S holds for all w0 ∈MIX.
(By evident induction on the number of a.) �

5 Conclusions

We can resume the relations between structure languages and languages gener-
ated by the dependency grammars considered in this paper as follows:

D(CDGproj) � D(CDG) � D(gCDG) ⊆ D(gDSG) and
CFL = L(CDGproj) = L(gDSGσ<ω) � L(CDG) ⊆ L(gCDG) = L(gDSG),

where CDGproj is the class of projective CDG and gDSGσ<ω is the class of
gDSG with bounded valency deficit.

The dependency structure and categorial dependency grammars can be eas-
ily adopted to practical large scale definitions of surface dependency syntax of
natural languages. For this, one should relate dependency names with bounded
length feature value products admitting feature unification and value propaga-

34 D. Béchet, A. Dikovsky, and A. Foret

tion through dependencies. Besides this, the explicit use of anchored categories
in DSG and CDG make possible to express a variety of word order constraints. In
fact, the potential assignments are closely related to Debusmann and Duchier’s
formulation of dependency grammar [8]. However, the FA-constraint excludes
crossing of similarly labeled long distance dependencies.

CDG and DSG have an efficient parsing algorithm (O(n5) in the worst
case) [3]. In practice, the valency deficit is bounded by a small constant (2 or 3).
In this situation, this parsing algorithm has complexity O(n3) even if there are
discontinuous long distance dependencies. So the dependency grammars studied
in this paper represent an interesting class of grammars competitive with respect
to mild context-sensitive grammars.

References

1. Les grammaires de dépendance. In Sylvain Kahane, editor, Traitement automatique
des langues, volume 41, Paris, 2000. Hermes.

2. Proc. of the workshop “Recent Advances in Dependency Grammars”. in conjunc-
tion with coling 2004. In Geert-Jan M. Kruijff and Denys Duchier, editors, “Re-
cent Advances in Dependency Grammars”. COLING’04 Workshop, August 28 2004,
Geneva, Switzerland, August 2004.

3. Michael Dekhtyar and Alexander Dikovsky. Categorial dependency grammars. In
Proc. of Int. Conf. on Categorial Grammars, pages 76–91, Montpellier, France, 2004.

4. Alexander Dikovsky. Grammars for local and long dependencies. In Proc. of the
39th Intern. Conf. ACL’2001, pages 156–163. ACL & Morgan Kaufman, 2001.

5. Alexander Dikovsky. Polarized non-projective dependency grammars. In Ph.
de Groote, G. Morill, and Ch. Retoré, editors, Proc. of the Fourth Intern. Conf.
on Logical Aspects of Computational Linguistics, Lecture Notes in Artificial Intelli-
gence. vol. 2099, pages 139–157. Springer, 2001.

6. Alexander Dikovsky. Dependencies as categories. In G-J.M. Kruijff and D. Duchier,
editors, Proc. of Workshop “Recent Advances in Dependency Grammars”. In con-
junction with COLING 2004, pages 90–97, Geneva, Switzerland, August, 28th 2004.

7. Alexander Dikovsky and Larissa Modina. Dependencies on the other side of the
Curtain. Traitement Automatique des Langues (TAL), 41(1):79–111, 2000.

8. Denis Duchier and Ralph Debusmann. Topological dependency trees: A constraint
based account of linear precedence. In Proc. of the 39th Intern. Conf. ACL’2001,
pages 180–187. ACL & Morgan Kaufman, 2001.

9. Aravind K. Joshi, Vijay K. Shanker, and David J. Weir. The convergence of mildly
context-sensitive grammar formalisms. In P. Sells, S. Shieber, and T. Wasow, editors,
Foundational issues in natural language processing, pages 31–81, Cambridge, MA,
1991. MIT Press.

Towards a Computational Treatment
of Binding Theory

Roberto Bonato

Dipartimento di Informatica, Università degli Studi di Verona,
Strada Le Grazie, 15 - 37134 Verona, Italy

bonato@sci.univr.it

Abstract. We present two approaches to the task of computing in an
inductive compositional way semantic representations of the meaning
of a sentence that take into account the principles of Binding Theory.
The two algorithms reflect two different interpretations that have been
proposed for the principles of Binding Theory as first formulated by
Noam Chomsky. We present the two algorithms as additional machinery
to enrich well-known bottom-up procedures to compute the logical form
of a sentence in a (non intensional) Montagovian style.

1 Introduction to Binding Theory

Binding Theory (henceforth BT for short) aims at describing referential and
mutual distributional properties among Determiner Phrases (or DPs) in a given
sentence. DPs include a wide range of linguistic expressions, but we restrict our
attention to three kinds of DP: anaphors (or reflexives, such as himself, herself,
themselves), pronouns (such as he, him, them), and referential expressions (or
full-DP, such as John, the maid, the woman that married Bill). A referential
expression bears an independent semantic content, while this is not the case
for an anaphor or a pronoun: their semantic interpretation relies on other en-
tities within or outside the sentence they belong to, with which they are said
to be coreferential. In order to compute the correct interpretation for a given
sentence, a speaker must be able to recover that semantic content for pronouns
and anaphors, and BT provides some general principles to rule this process com-
monly carried out very quickly by a human speaker.

Binding Theory was first formulated as a module of Government and Binding
Theory by Chomsky in [1] (see also [2] for an updated account on BT). It relies
on a syntactic device called coindexing, and on a structural relation between
nodes of the parse tree (or phrase-marker) of a given sentence called c-command.
Indexing is the practice of denoting the interpretation relations among the DPs
of a sentence by means of indices, i.e. integers attached to DPs in such a way
that elements bearing the same index are taken to denote the same entity, while
different indices correspond to different denotations.

(1) a. John1 thinks that Mary likes him1.
b. John2 thinks that Mary likes him1.

2005, LNAI 3492, pp. 35–50, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

36 R. Bonato

In (1-a) him is coindexed with John, and thus it’s supposed to have the same
denotation, while in (1-b) different indexes imply that their denotations must
be different.

In the parse tree for a given sentence, we say that a node n1 c-commands
another node n2 when n1 does not dominate n2 and the first node dominating
n1 also dominates n2. More intuitively, we could say that either n2 is a sister of
n1, or it’s the descendant of a sister of n1.

(2) A

B C

D E

In (2) B c-commands C, D and E; C c-commands B; D c-commands E; E
c-commands D. No other c-command relation exists.

On the basis of the notions of coindexing and c-command, two DPs are said to
be (syntactically) bound when one c-commands the other and they are coindexed.
BT formulates three principles which rule situations in which a given DP can,
must or must not be bound within a sentence.

Principle A. A reflexive pronoun must be bound within its local domain.

(3) Principle A examples:
a. Johni hates himselfi.
b. Johni thinks that Billj hates himselfj .
c. *Johni thinks that Billj hates himselfi.

Principle B: A non-reflexive pronoun must not be bound within its local do-
main.

(4) Principle B examples:
a. *Johni hates himi.
b. Johni hates himj .
c. *Johni thinks that Billj hates himj .
d. Johni thinks that Billj hates himi.

Principle C: A referential expression must not be bound.

(5) Principle C examples:
a. *Johni hates Johni.
b. Hei hates Johnj .
c. *Hei hates Johni.
d. *Hei thinks that Billj hates Johni.

The notion of local domain of a DP deserves further analysis but a formal
definition goes beyond the scope of the present work. We rely on the very rough
approximation that considers the local domain of a pronoun as the smallest

Towards a Computational Treatment of Binding Theory 37

clause it belongs to. For example, clauses introduced by complementizer that in
the previous examples are the local domains for the DPs within them, instead
of the whole sentence.

Principles A, B and C describe three conditions (two negative and one pos-
itive) that every sentence must fulfill in order to be well formed. Whether such
well-formedness has to be considered of a syntactic or semantic nature is still
the subject of active debate. Binding Theory lies at the very core of the debate
on the interface between syntax and semantics.

From a computational point of view such a formulation of Binding Theory
is quite unsatisfactory. Indeed, BT principles provide a procedure to verify that
a given indexing for a sentence is BT-compliant, but they are not constructive:
no effective procedure to associate correct indexing to DPs in a sentence is pro-
vided. We could think of an algorithm which generates all possible indexing for
a sentence and then filters them through a BT-principles verification module:
obviously enough, not an efficient approach. We would like to incorporate such
principles into a computational semantic framework that compositionally com-
putes semantic representations for a sentence which are expressive enough to
take into account possible, impossible or optional indexing for a sentence. As it
will be made clear in sections 3 and 4, different interpretations that have been
proposed to principles A, B and C yield different computational solutions to this
problem. In section 3 we outline the so-called bound-variable interpretation of
Binding Theory, largely due to the work of Tanya Reinhart in [3], while in 4 we
present a more classical, coreferential interpretation of BT. For each of them we
sketch a possible computational treatment.

2 Basic Apparatus

Both algorithms presented share a common basic structure: (a) the input are
generative parse trees; (b) additional information on the structural relations be-
tween DPs is inductively collected during a preprocessing phase; (c) the semantic
interpretation procedure possibly re-arranges the structure of the parse trees by
means of Quantifier Raising according to the information collected during the
previous phase; (d) suitable semantic representations are generated by means of
classical computational semantics methods enriched with some additional ma-
chinery to deal with relations computed during phase (b). The algorithms share
a basic formal apparatus, the main differences lying in different interpretation
procedures (points (c) and (d)).

We assume that the input parse trees are binary branching. Although most
of the algorithmic apparatus we present is compatible with other types of parse
trees, we stick to this assumption stemmed from the most recent developments of
generative syntax (like in [4] for example) which is computationally convenient
and still accounts for a large range of phenomena. On the basis of evidence
which seemed to jeopardize the validity of the notion of c-command, radically
different ”c-command”-less approaches have been proposed (see for example [5]).
Nevertheless, recent developments like Pesetsky’s “cascades” (see [6]) strongly

38 R. Bonato

advocate for a binary tree approach and confirm the central role and predictive
power of the notion of c-command for Binding Theory.

For a given sentence s, let τs be a generative parse tree for s and N =
{n1, n2, . . . , nq} be the set of nodes in τs, each corresponding to a different
syntactic constituent1. Let D ⊆ N the set of nodes in τs which correspond to
Determiner Phrases (DPs), and the three disjoint sets A, P and R be subsets
of D whose members are the nodes corresponding to anaphors, pronouns and
full-NP (or r-expressions) respectively.

Definition 1. A binary predicate local is defined on D ×D such that local(ni,
nj) = TRUE iff nodes ni and nj correspond to two DP constituents which belong
to the same local domain2.

Definition 2. A binary predicate agr is defined in D×D, such that agr(ni, nj) =
TRUE iff the agreement features of DP constituents corresponding to ni and nj

are mutually compatible.

Definition 3. A function dps(n) is defined from N to P (N), which returns the
set of nodes which correspond to DP constituents within the constituent rooted
in n.

Quantifier Raising is an operation which restructures a parse tree, usually to
correct a type mismatch between the types of the constituents involved. Basi-
cally, for a given parse tree τs and one of its DP constituents d, d is moved to
a ”higher” position (or landing-site) in the tree, leaving a trace which will be
interpreted as a bound variable.

τs =

IP

John VP

offended DP

every linguist

τ ′s =

IP

DP

every linguist
1 IP

John VP

offended t1

In τs the quantificational DP every linguist is traditionally given type 〈〈e, t〉, t〉:
it’s a function from predicates (functions from entities to truth values) to truth
values. On the other hand, verb offended has type 〈e, 〈e, t〉〉, that is, it’s a func-
tion from entities to functions from entities to truth values. Therefore, in τs no

1 When this doesn’t generate confusion, we’ll often blur the difference between a node
in the parse tree and the corresponding syntactic constituent, e.g. we’ll say that node
n is an anaphor.

2 Deciding whether two NPs belong to the same local domain is far from trivial and
it represents an important part of BT, but in the present work we won’t go into the
details about how that can be done algorithmically.

Towards a Computational Treatment of Binding Theory 39

functional application is possible between offended and every linguist. The mis-
match is amended in τ ′s: constituent DP is raised right above the first IP node,
leaving a trace t1 which will be interpreted as a variable. Node 1 in τ ′s marks the
presence of an operation of lambda abstraction for the variable associated to t1
on the subterm rooted in IP.

3 First Approach

3.1 Reinhart’s Interpretation of BT

The first algorithm we are going to detail basically adheres to the interpretation
of BT first given by Tanya Reinhart in [3]. According to this interpretation,
Binding Theory does not really constrains coreference relations between dis-
tinct linguistic entities in a sentence, i.e. whether two distinct DPs can, must
or must not refer to (or denote) the same entity in the real world. Instead,
Binding Theory only rules the conditions under which is it possible, impossible
or mandatory to give a bound-variable semantic reading between two entities.
Two semantically bound entities receive the same semantic interpretation, but
this purely grammatical ”coreferential” effect must be kept conceptually distinct
from other accidental coreference phenomena which will be dealt by pragmatics
or discourse theory modules. In a sentence like John likes himself what prin-
ciple A of Binding Theory actually tells us is that himself and John must be
given a bound-variable interpretation. That is, the actual semantic representa-
tion computed for the sentence is (λx.like(x, x))(John) = like(John,John).
So coreference between himself and John is more a byproduct of a purely gram-
matical property as bound variable reading, than a principled correspondence
between linguistic entities and real world referents.

According to this interpretation, principle B doesn’t forbid at all sameness
of reference between a non-reflexive pronoun and another DP. All that it states
is that a pronoun cannot be given a bound variable reading with another DP
within its local domain. Of course, that could very well happen outside. With
examples:

(6) a. John likes him.
b. John thinks that he likes Ann.

In (6-a) principle B only forbids a semantic representation where John and
him are semantically bound3. That is, (λx.like(x, x))(John) cannot be a good
semantic representation for (6-a). However, nothing prevents John and him from
referring to the same individual in the real world. Indeed, we can think of many
contexts in which this is the case, like in the well known (although not uncon-
troversial) example: ”It is not true that nobody likes John. John likes him!”.
To put it differently, coreferential relations are a matter of discourse-theoretical

3 Classical generative semantics states that a DP α semantically binds a DP β iff β
and the trace of α are semantically bound by the same variable binder.

40 R. Bonato

issues, and not the topic of Binding Theory, which only rules a very specific,
“internal” property as semantic binding. The optional character of principle B
for pronouns outside their local domain is evident in example (6-b), where it
licenses a bound variable reading between John and he. Thus, we can have a se-
mantic representation of (6-b) as (λx.think(x, like(x,Ann)))(John), in which
he and John are semantically bound by the same variable binder.

Principle C basically disappears in this reformulation of BT. A referential
expression, from a computational semantics point of view, is not a variable, and
so it doesn’t make sense for it to forbid any bound variable reading with any
other c-commanding entity in the sentence.

At first sight, Reinhart’s interpretation looks very attractive from a com-
putational point of view. “Forbidden coreference” relations between two DPs
(often referred to as obviation relations) basically disappear because they are
converted into non-bound variable readings, which are provided by default by
using fresh variables at each occurrence of a pronoun or anaphor. A sentence like
John likes him will be naturally translated into like(John, x) with no further
constraints on the fact that usually such a sentence entails (in the vast major-
ity of contexts at least, although not all), that John and him have different
denotations. Additional computational machinery is only needed to account for
optional or mandatory bound-variable readings when principle B or principle A
apply, respectively.

However, this superficial “unambitious” view of Reinhart’s interpretation
hides a major computationally challenging issue. As a matter of fact, a speaker
who wants to convey the meaning John likes himself (where himself behaves like
a bound variable later saturated by John) will never utter the sentence John likes
him (where the pronoun him behaves like a free variable which can be mapped
by the context into John). How does Reinhart’s interpretation of BT account for
such evidence? Reinhart provides an elegant solution by means of ”principle I”:
if a given message can be conveyed by two minimally different logical forms of
which one involves variable binding where the other has co-reference, then the
variable binding structure is always the preferred one. Although conceptually
neat, this principle is computationally ruinous. Indeed, it implies being able to
decide whether two distinct logical forms (conveyed messages corresponding to
two different sentences) are satisfied by the same sets of variable assignments,
and such a computational problem is NP-complete. At the present stage of work
we still don’t address this issue.

3.2 Algorithm’s Outline

The algorithm takes as input a generative parse tree τs associated to a given
sentence s. It returns a set of semantic representations, each corresponding to a
possible reading for the sentence according to the interpretation of BT principles
given by Reinhart and detailed in the previous section.

First Step: Computing O and M Relations. We need to compute some
structural relations existing between DPs in τs. We enrich the basic formal ma-

Towards a Computational Treatment of Binding Theory 41

chinery traditionally used to compute the first order semantic representation of
a parse tree (see [7] for further details) by means of two binary predicates:

Definition 4. A binary predicate O (for optional) is defined in D × D, such
that O(ni, nj) = TRUE iff:

– nj ∈ P;
– ni c-commands nj;
– local(ni, nj) = FALSE;
– agr(ni, nj) = TRUE.

Predicate O models the situation in which two distinct nodes in the tree corre-
sponds to two DP constituents which, according to principle B, can be given a
bound-variable reading.

Definition 5. A binary predicate M (for mandatory) is defined in D×D, such
that M(ni, nj) = TRUE iff:

– nj ∈ A;
– ni c-commands nj;
– local(ni, nj) = TRUE;
– agr(ni, nj) = TRUE.

Predicate M characterizes the situation in which two distinct nodes in the parse
tree correspond to two DP constituents which, according to principle A, must
be given a bound variable interpretation.

Each node n in the parse tree τs comes with two sets associated, On ⊆ D×D
and Mn ⊆ D × D, which contain the new couples (ni, nj) for which O(ni, nj)
and M(ni, nj) respectively hold in the subtree rooted in n. For each node n, sets
On and Mn can be inductively computed as follows:

– if n is a leaf, On = Mn = ∅;
– let n1 and n2 be the two daughters of n, then:

1. If n1 corresponds to a DP constituent, for each ni ∈ dps(n2):
• if ni ∈ A and local(n1, ni) = TRUE and agr(n1, ni) = TRUE, then

add (n1, ni) to Mn;
• if ni ∈ P and local(n1, ni) = FALSE and agr(n1, ni) = TRUE,

then add (n1, ni) to On.
2. If n2 corresponds to an NP constituent, for each nj ∈ dps(n1):

• if nj ∈ A and local(n2, nj) = TRUE and agr(n2, nj) = TRUE, then
add (n2, nj) to Mn;

• if nj ∈ P and local(n2, nj) = FALSE and agr(n2, nj) = TRUE,
then add (n2, nj) to On.

As it can be easily proved, for each n in τs, On and Mn contain nodes for
which relations O and M hold, respectively. Agreement and locality conditions
are verified by definition, while c-command relation is verified by construction:
both point 1 and 2 take into account only (and all) couples (ni, nj) where nj is
either a sister or a descendant of a sister of ni, which is one of the way we can
characterize c-command relation, as seen in section 2.

42 R. Bonato

Second Step: Rearranging the Parse Tree. Information on relations M
and O that hold between DP nodes collected during the first step is now used
to induce some transformations on the parse tree. Quantifier Raising is used in
a new way in addition to the classical case of type mismatch resolution.

The intuitive idea behind this step is that, for reasons that will be made
clear in the next step, when we come to the semantic interpretation, we want
relations O and M to hold between entities which are semantically mapped into
(free or bound) variables. For each couple (ni, nj) which belong to O or M , we
have by construction that nj ∈ P or nj ∈ A, that is nj is either a pronoun
or an anaphor, traditionally interpreted as variables in classical computational
semantics. In general this is not the case for ni which may very well belong to
P, that is, it can be a referential expression. How can we restructure the tree in
such a way that the semantic interpretation of the node ni will be a variable and
yet we don’t change the overall semantic representation for the sentence? The
answer lies in QR, which rearranges a tree in a way which is convenient to the
purposes of step 3, leaving a variable as the semantic interpretation associated to
node ni, yet without affecting the final semantics of the sentence, as it is shown
by the fundamental equivalence of lambda calculus: α(β) ≡ (λx.α(x))(β).

In this case we apply QR to the constituent rooted in ni, ”raising” it up to
the closest IP node in the tree. The result is a new parse tree τ ′s which will be the
input to the semantic interpretation procedure detailed in step 3. It is important
to note that sets On and Mn associated to a node n don’t ”move” along with
the raised constituents and still model the actual BT relations computed in step
2, although the semantic denotation associated to the constituents involved has
(momentarily) changed.

(7) s = John likes himself.

τs =

IP
M = {(john, himself)}

John VP

likes himself

τ ′s =

IP

John

1 IP
M = {(t1, himself)}

t1 VP

likes himself

In licensing Quantifier Raising for type e DPs and not just quantificational
DPs, we adhere both to theoretical and computational convenience criterions.
As seen in section 2, QR was first introduced to amend type mismatches induced
by quantificational DPs in object position. In [3] Reinhart provides convincing
evidence that also type e DP can undergo QR, basically to solve the sloppy-strict
identity puzzle for elliptic construals. Furthermore, it can be proved that truth
conditions of a sentence in which a type e DP has been quantifier-raised are
equivalent to those in which the DP is left in situ. As pointed out in [7], in this
situation it is difficult to see what could forbid the possibility that DPs of type e
undergo the same movements of DPs of type 〈〈e, t〉, t〉. We thus choose to license

Towards a Computational Treatment of Binding Theory 43

such kind of movements for reasons of computational convenience that will be
made clear in the following steps of the algorithm.

Third Step: Computing Semantics. Traditional computational semantics
(as presented, for example, in [7]) computes a (unique) semantic representation
for a node n in an inductive way: if n is a leaf its semantics is directly provided by
the lexicon for the lexical entry associated; if n is an internal node, its semantics
is computed through some basic operations (functional application, boolean con-
junction, lambda abstraction) out of the semantics of its children nodes. We need
to enrich such a framework so as to compute multiple semantic representations
associated to a given node, each of them corresponding to a different reading for
the anaphora and pronouns involved4. In order to do so, for each node n of the
parse tree τ ′s now associated to a given sentence s, instead of single a lambda
term we compute a set Sn of lambda terms, each corresponding to a different se-
mantic representation for the constituent associated to node n: the information
collected in sets On and Mn for each node enrich the semantic interpretation
procedure in a way that takes into account Reinhart’s interpretation of binding
principles. Let’s see how this can be done in an inductive algorithmic way.

Let τ ′s be the parse tree associated to a given sentence s after having been
restructured by step 2, in which we suppose that each node n is decorated with
additional information provided by sets On and Mn associated, as described in
section 3.2. We want to compute the set Sn of semantic representations associ-
ated to node n. This can be done inductively as follows:

– if n is a leaf, Sn = {S}, where S is the semantic representation of the
corresponding lexical entry as provided by the lexicon;

– if n is an internal node, let n1 and n2 be its children, and S1 and S2 be
the sets of semantic representations associated to each of them. If we use
the symbol ◦ to indicate ”semantic composition” (see [7] for further details
on the basic mechanisms of semantic composition), for each Si ∈ S1 and
Sj ∈ S2, we initially define Sn =

⋃
i,j{Si ◦ Sj}.

For each S(x1, . . . , xq) ∈ Sn, let On and Mn be the sets associated to node
n defined as in section 3.2. The interpretation procedure goes on as follows:
1. for each (ni, nj) ∈ Mn, �ni� = xi and �nj� = xj by construction of step

2, with xi and xj fresh distinct variables. Add S(x1, . . . , xq)[xi/xj] to
the set S − {S(x1, . . . , xq)};

2. for each (nk, nl) ∈ On, �nk� = xk and �nl� = xl by construction of step
2, with xk and xl fresh distinct variables. Add S(x1, . . . , xq)[xk/xl] to
the set S.

Point 1 reflects the situation in which node nj corresponds to an anaphor
for which ni is a possible antecedent. In that case the free variable reading
S(x1, . . . , xq) must be replaced by one in which the two corresponding variables

4 An underspecified representation along the lines of [8], for example, would be highly
recommended to deal with the explosion of semantic readings, and it will be the next
step in our work.

44 R. Bonato

are equated (which is implemented as a substitution in S(x1, . . . , xq)[xi/xj])
and will become bound by the later application of lambda abstraction over the
outermost one.

Point 2 deals with all the situations in which node nk has been identified
as a possible antecedent of a pronoun corresponding to node nl. In this case
we must provide both readings: one in which the two corresponding entities are
not bound (S(x1, . . . , xq), which is generated by default by the algorithm which
associates unique distinct variables to every pronoun and reflexive), and a second
one (S(x1, . . . , xq)[xk/xq]) in which the two entities equated and (later) bound
by a lambda abstraction over the outermost one.

3.3 Some Examples

(8) s = John likes himself.

τs =

IP
M = {(john, himself)}

John VP

likes himself

τ ′s =

IP

John

1 IP
M = {(t1, himself)}

t1 VP

likes himself

In interpreting node IP of τs, we must interpret also the associated set
M = {(john, himself)}. Since the denotation of John is not a variable, step 2
from the previous section triggers the quantifier raising for John in τs, whose
result is τ ′s, over which the interpretation process goes on. If we set �t1� = x1

and �himself� = x2, with x1, x2 fresh new variables, the semantic represen-
tation computed for the ”smaller” IP subtree in τ ′s is S = {like(x1, x2)},
with M = {(t1, himself)}. According to point 1, the resulting semantics is
S ∪{like(x1, x2)[x1/x2]}−{like(x1, x2)} = {like(x1, x1)}. Next step (lambda
abstraction over x1) yields S = {λx1.like(x1, x1)}, later saturated by functional
application of �John� = john in S = {like(john, john)}.

(9) s = John likes him. τs =

IP

John VP

likes him

Nothing special happens: sets O and M are empty for any node, semantics
for the IP node is simply S = {like(john, x1)} in compliance with Reinhart’s
treatment of this case.

Towards a Computational Treatment of Binding Theory 45

(10) s = John thinks that he likes himself.

τs =

IP
O = {(John, he)}

John VP

thinks IP
M = {(he, himself)}

he VP

likes himself

τ ′s =

IP

John
1 IP
O = {(t1, he)}

t1 VP

thinks IP
M = {(he, himself)}

he VP

likes himself

Since �John� is not a variable, according to step 2 in the previous sec-
tion, this triggers the quantifier raising for John in τs, resulting in tree τ ′s.
If we set �he� = x3 and �himself� = x2, the interpretation process computes
S ′ = {like(x3, x2)} with M = {(he, himself)} for the smallest IP constituent
in τ ′s. By application of rule 1 we then have S ′ = {like(x2, x2)}. If we set
�t1� = x1, when the interpretation process reaches the middle IP node, we have
S ′′ = {think(x1, like(x2, x2))} with O = {(t1, he)}. Application of point 2 from
the previous section results in the following semantics for the node:

S ′′ ∪ {think(x1, like(x2, x2))[x1/x2]} =
= {think(x1, like(x2, x2)),think(x1, like(x1, x1))}.

Successive steps yield the following semantic representations:

S ′′ = {λx1.think(x1, like(x2, x2)), λx1.think(x1, like(x1, x1))} (λ-abstr.)
= {think(john, like(x1, x1)),think(john, like(john, john))} (f. appl.)

(11) s = John thinks that he likes him.

τs =

IP
O = {(John, he), (John, him)}

John VP

thinks IP

he VP

likes him

τ ′s =

IP

John

1 IP
O = {(t1, he), (t1, him)}

t1 VP

thinks IP

he VP

likes him

Once again the fact that �John� is not a variable triggers the quantifier rais-
ing of John in τs, the result being τ ′s. It is easy to verify that the semantic
computation for the middle IP node yields S = {think(x1, like(x2, x3))} with
O = {(t1, he), (t1, him)}. According to point 2 from the previous section the full
semantics for the node will be:

46 R. Bonato

S ′ = S ∪ {think(x1, like(x2, x3))[x2/x1]} ∪ {think(x1, like(x2, x3))[x3/x1]}
= {think(x1, like(x2, x3)),think(x1, like(x1, x3)),think(x1, like(x2, x1))}

Successive interpretation steps yield:

S ′ = {λx1.think(x1, like(x2, x3)), λx1.think(x1, like(x1, x3)),
λx1.think(x1, like(x2, x1))} =

= {think(john, like(x2, x3)),think(john, like(john, x3)),
think(john, like(x2, john))}.

(12) s = he thinks that John likes him.

τs =

IP
O = {(he, him)}

He VP

thinks IP

John VP

likes him

In this case, being �he� a variable, no ”mismatch” occurs when the interpre-
tation process reaches the highest IP, where S = {think(x1, (like(john, x2)))}
with O = {(he, him)}. So, according to the interpretation rules for O, we have
that the complete semantics for the sentence is the set:

S ′ = S ∪ {think(x1, (like(john, x2)))[x1/x2]}
= {think(x1, (like(john, x2))),think(x1, (like(john, x1)))}

4 Second Approach

4.1 The Coreferential Interpretation of BT

The second approach we present sticks to a somewhat more classical interpreta-
tion of Binding Theory, that is, a coreferential one. Anaphoric elements such as
pronouns and reflexives are linguistic items that don’t have intrinsic denotation
or reference. Their linguistic antecedent is the linguistic element from which the
anaphoric element obtains its reference, and thus with which it is said to be
coreferential. Besides, this approach states that in order for a sentence like John
likes John to be semantically correct, the first occurrence of John must neces-
sarily refer to a distinct individual than the second one, that happens to have
the same name. This coreferential interpretation of Binding Theory advocates a
tight correspondence between linguistic and real world entities.

In the perspective of this interpretation, principle A states that a reflexive
must take its reference within its local domain. That is, it establishes a functional

Towards a Computational Treatment of Binding Theory 47

dependence between the reference of the reflexive and exactly one of the DPs
which belong to its local domain. This functional dependence cannot but be some
kind of identity function. Principle B states that a pronoun must not take its
reference within its local domain, but it doesn’t say anything about what must
its actual reference. We thus have a condition under which the interpretation
procedure must fail, that is, denotations of the two entities must be different.
Principle C is similar to principle B, here again we can imagine to translate it
in its computational counterpart as an additional condition that can make the
interpretation process fail.

4.2 Second Algorithm’s Outline

Semantic interpretation according to this alternative interpretation of BT differs
from the previous one under some important respects. This entails substantive
changes in the formal apparatus needed to compute the corresponding semantic
representations.

First Step: Computing F and M Relations. Principle B takes an emi-
nently obviative character. Whereas in the previous approach it made binding
possible between a pronoun and a c-commanding entity outside its local do-
main, it now makes coreferentiality forbidden between a pronoun and any other
c-commanding DP within its local domain. Outside this domain, it can corefer
with any other entity, either c-commanding or not. Principle C (previously im-
plicit in the semantic interpretation process) takes now an obviative character
too: a full NP must not be coreferential with any other c-commanding entity.

We need a new relation between entities and a modified interpretation mech-
anism in order to express such obviative conditions, such that semantic inter-
pretation fails if those conditions are violated. This will be done by replacing
binary predicate O and set O of the previous approach with binary predicate F
and set F ⊆ D ×D associated to each node of a parse tree.

Definition 6. A binary predicate F (for ”forbidden”) is defined in D×D, such
that F (ni, nj) = TRUE iff:

– nj ∈ P;
– ni c-commands nj;
– local(ni, nj) = TRUE;
– agr(ni, nj) = TRUE.

Predicate F holds between two nodes in the parse tree iff they correspond to a
generic DP c-commanding a non reflexive pronoun within its local domain and
which due to principle B cannot be coreferential.

Each node n in the parse tree τ ′s comes with two sets associated, Mn ⊆ D×D
and Fn ⊆ D ×D. They are inductively computed as follows:

– if n is a leaf, Mn = Fn = ∅;
– if n is an internal node, let n1 and n2 be the two daughters of n, then:

48 R. Bonato

1. If n1 corresponds to an NP constituent, for each ni ∈ nps(n2):
• if ni ∈ A and local(n1, ni) = TRUE, then add (n1, ni) to Mn;
• if ni ∈ P and local(n1, ni) = TRUE, then add (n1, ni) to Fn.

2. If n2 corresponds to an NP constituent, for each nj ∈ nps(n1):
• if nj ∈ A and local(n2, nj) = TRUE, then add (n2, nj) to Mn;
• if nj ∈ P and local(n2, nj) = FALSE, then add (n2, nj) to Fn.

It can be easily proved that for each n in τs, Fn and Mn contain nodes for which
previous section relations F and M hold, respectively. Agreement and locality
conditions are verified by definition, while c-command relation is verified by
construction: both point 1 and 2 take into account only (and all) couples (ni, nj)
where nj is either a sister or a descendant of a sister of ni, which is one of the
possible characterizations for c-command relation, as seen in section 2.

Second Step: Rearranging the Parse Tree. This step is entirely analogous
to third step of the previous algorithm presented. The fact that the semantic
interpretation of ni in a couple (ni, nj) belonging either to F or to M is not a
variable triggers the QR of the constituent rooted in ni.

Third Step: Computing Semantics. Semantic interpretation for a sentence
s takes as its input the restructured parse tree τ ′s, where all ni ∈ R has been
quantifier-raised and whose nodes are decorated with sets M and F . It outputs
a set of semantic representations S inductively computed in the following way
for a generic subtree rooted at node n:

– if n is a leaf, then S = {S}, with S the lambda term which describes the
semantics for the lexical entry as given in the lexicon.

– if n is an internal node, let n1 and n2 be its children, and S1 and S2 be the
sets of semantic representations associated to each of them. Then for each
Si ∈ S1 and Sj ∈ S2, we initially define S =

⋃
i,j{Si ◦ Sj}.

For each S(x1, . . . , xq) ∈ S, let Mn and Fn be the sets associated to node
n, then for each (ni, nj) ∈ Mn ∪Fn we have by construction that �ni� = xi

and �nj� = xj , with xi, xj unique distinct variables. Then:

1. for each (ni, nj) ∈ Mn, add S(x1, . . . ,
xq)[xi/xj] to the set S − {S(x1, . . . , xq)};

2. for each (nk, nl) ∈ Fn, add S(x1, . . . , xq) ∧ (xk �= xl) to the set S.

Point 1 is the same as the corresponding point in the previous approach. In
order to be well defined, point 2 makes an implicit assumption, that is lambda
term S must be of type t (truth-value), otherwise the conjunction wouldn’t make
sense. We can easily prove that by construction this is always the case. We can
also prove by construction that if (ni, nj) ∈ F or (ni, nj) ∈ M, then ni and nj

are either reflexives, pronouns, or traces. In any case, linguistic objects whose
semantic representations are variables. The expression �nk� �= �nl� will always
translate into a relation between variables in semantics.

Towards a Computational Treatment of Binding Theory 49

4.3 Some Examples

(13) s = John likes him.

τs =

IP
F = {(John, him)}

John VP

likes him

τ ′s =

IP

John
1 IP
F = {(t1, him)}

t1 VP

likes him

As usual, since the denotation of John is not a variable, parse tree τs is
rearranged into τ ′s. When the semantic interpretation process reaches the lower
IP node, it computes S = {like(x1, x2)} with F = {(t1, him)}. According to
point 2 of the previous section, this will reduce to

S ′ = {like(x1, x2)} − {like(x1, x2)} ∪ {(like(x1, x2) ∧ (�t1� �= �him�))} =

= {like(x1, x2) ∧ (x1 �= x2)}

By successive semantic operations we get:

S = {λx1.[like(x1, x2) ∧ (x1 �= x2)]} (λ-abstr. over x1)

= {like(john, x2) ∧ (john �= x2)} (functional application of �John�)

(14) The man who blames John hates him.

τs =

IP
F = {(the man who blames John, him)}

DP

The N

man CP

who VP

blames John

VP

hates him

τ ′s =

IP

DP

The N

man CP

who VP

blames John

1 IP
F = {(t1, him)}

t1 VP

hates him

50 R. Bonato

For the smaller IP subtree the situation is the same as in the previous
example and so we have SIP = {hate(x1, x2) ∧ (x1 �= x2)} which becomes
{λx1.[hate(x1, x2) ∧ (x1 �= x2)]} after lambda abstraction over x1. We assume
for DP node a standard Russellian semantics, that is SDP = {λQ.[∃x(man(x) ∧
blame(x, john)∧∀y((man(y)∧hate(y, john)) → (y = x))∧Q(x))]}. Resulting
semantics is thus

SDP ◦ SIP =λQ.[∃x(man(x)∧ blame(x, john)∧∀y((man(y)∧ hate(y, john))→
→ (y = x)) ∧Q(x))] ◦ λx1.[hate(x1, x2) ∧ (x1 �= x2)] =

= ∃x(man(x) ∧ blame(x, john) ∧ ∀y((man(y) ∧ hate(y, john)) →
→ (y = x)) ∧ (λx1.[hate(x1, x2) ∧ (x1 �= x2)])(x)) =

= ∃x(man(x) ∧ blame(x, john) ∧ ∀y((man(y) ∧ hate(y, john)) →
→ (y = x)) ∧ hate(x, x2) ∧ (x �= x2))

5 Conclusion and Further Work

We have presented the general schemas for two algorithms which compute seman-
tic representations for natural language sentences with intrasentential anaphora.
The first is inspired by Reinhart’s interpretation of Binding Theory, the second
by the more classical coreferential approach. We have to delve deeper into the
nature of the �= relation which we used for the second algorithm, and to further
explore the computational complexity issues of both approaches.

References

1. Chomsky, N.: Lectures on Government and Binding. Foris, Dordrecht (1981)
2. Büring, D.: Binding Theory. Cambridge Textbooks in Linguistics. Cambridge Uni-

versity Press, Cambridge (to appear)
3. Reinhart, T.: Anaphora and Semantic Interpretation. University of Chicago Press

(1983)
4. Chomsky, N.: The minimalist program. MIT Press, Cambridge, MA (1995)
5. Reinhart, T., Reuland, E.: Reflexivity. Linguistic Inquiry 24 (1993) 657–720
6. Pesetsky, D.: Zero Syntax: Experiencers and Cascades. The MIT Press (1994)
7. Heim, I., Kratzer, A.: Semantics in Generative Grammar. Blackwell, Oxford (1998)
8. Egg, M., Niehren, J., Ruhrberg, P., Xu, F.: Constraints over lambda-structures

in semantic underspecification. In Boitet, C., Whitelock, P., eds.: Proceedings of
the Thirty-Sixth Annual Meeting of the ACL, San Francisco, California, Morgan
Kaufmann Publishers (1998) 353–359

Translating Formal Software Specifications to
Natural Language

A Grammar-Based Approach

David A. Burke and Kristofer Johannisson

Department of Computing Science, Chalmers University of Technology and Göteborg
University, SE-41296 Göteborg, Sweden

krijo@cs.chalmers.se

Abstract. We describe a system for automatically translating formal
software specifications to natural language. The system produces natural
language which is acceptable to a human reader, and it supports by-
hand optimization by users who are not experts of our system. The
translation system is implemented using the Grammatical Framework,
a grammar formalism based on Martin-Löf’s type theory. We show that
this grammar-based approach scales well enough to handle a non-trivial
case study: translating the Object Constraint Language specifications of
the Java Card API into English.

1 Introduction

The goal of this work is to automatically translate formal software specifications
into natural language. Our motivation is a wish to link formal specifications (as
needed for formal methods) to informal ones (as found in software engineering
practice). Our work is a part of the KeY project [1], which integrates formal
software specification and verification into the industrial software engineering
processes.

We have implemented a system, earlier described in [2], using the Grammat-
ical Framework (GF), a grammar formalism based on Martin-Löf’s type theory
[3, 4]. In this paper we show that our grammar-based approach scales to such a
degree that we can handle a non-trivial case study.

The case study consists of specifications for the Java Card API [5], written
in the Object Constraint Language, which have been translated into English
by our system. To improve the quality of the translation, we have extended
our system with formatting and automatic generation of grammar modules for
domain-specific vocabulary, which can then be modified without requiring GF
expertise. We have also added various simple stylistic improvements inspired by
techniques familiar from Natural Language Generation [6]. As far as possible, all
these improvements are implemented in a declarative way in the GF grammars;
some of them also require manipulation of syntax trees by a separate program,
external to the grammars.

2005, LNAI 3492, pp. 51–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

52 D.A. Burke and K. Johannisson

1.1 Paper Overview

We start with background on the GF formalism, formal specifications, the KeY
project, and the Java Card API specification case study in Sect. 2. In Sect. 3 we
then give a motivating example from the case study, showing an example formal
specification, as well as English translations before and after our improvements.

Sect. 4 explains the overall architecture of the translation system, while
Sect. 5 is concerned with grammar engineering: how to design the grammar
based system to meet our goals.

Sect. 6 describes related work, mainly Natural Language Generation. Some
figures on the size of the case study are given in Sect. 7, and we then conclude
in Sect. 8.

2 Background

2.1 The Grammatical Framework

The GF Formalism. The Grammatical Framework (GF) is a formalism for defin-
ing grammars [3]. A GF grammar consists of one part which describes abstract
syntax, and another part which describes concrete syntax. The abstract syntax
part is formulated in a version of Martin-Löf’s type theory [4], and can be seen
as a description of how to construct abstract syntax trees. The concrete syntax
then consists of linearization rules telling how to present these trees as expres-
sions of a particular language. This is a distinguishing feature of GF as compared
to many other grammar formalisms: grammars are written from the perspective
of linearization rather than parsing. In fact, we can consider the GF formalism
as a linearization (or generation) oriented typed functional language.

The concrete syntax is based on record types, strings and finite parameter
types, enabling the representation of e.g. inflection tables and discontinuous
constituents. A central notion in GF is compositionality : the linearization of a
tree is always expressed in terms of the linearization of its subtrees, we have
no access to the subtrees themselves in a linearization rule. This restriction is
important for the implementation of GF.

By having multiple concrete syntaxes for the same abstract syntax we achieve
multilinguality: we can present the same tree in several languages in parallel, and
we can translate (within the language fragment described by the grammar) by
parsing using one concrete syntax and linearizing with another. Compositionality
imposes a restriction of structural similarity on the languages sharing the same
abstract syntax, however, this restriction is to some degree countered by the
expressiveness of the concrete syntax.

The GF System. The GF system [7] provides functionality such as parsing and
linearization for grammars written in the GF formalism. The system also includes
a syntax editor [8] in which the user can load a GF grammar and then edit the
abstract syntax trees described by the grammar. The trees are all the time
presented in the languages defined by the concrete syntaxes of the grammar. By

Translating Formal Software Specifications to Natural Language 53

editing the abstract syntax tree and observing the results in a familiar language,
a user can then interactively produce texts in foreign languages.

The GF Resource Grammar Library. An important part of the GF project is the
resource grammar library [9], which provides an API of types and functions for
common linguistic structures. There are resource grammars available for English,
Finnish, French, German, Italian, Russian and Swedish, which to a large extent
share the same interface.

Grammar Engineering. A typical GF application grammar describes a well-
defined fragment of natural language for a restricted domain, e.g. in our case
software specifications. The resource grammar library provides a division of
labour: the author of an application grammar can be a domain expert, who
does not need to be familiar with linguistic details. His or her task is to come up
with an abstract syntax which models the domain, and to link the abstract syn-
tax to concrete language by using the resource grammars. The linguistic expert
is in turn responsible for the implementation of the resource grammars, where
no knowledge of a particular domain is needed.

2.2 Formal Specifications and the KeY Project

The KeY Project. The KeY project [1] attempts to integrate formal software
specification and verification into the industrial software engineering processes.
The starting point is a commercial CASE (Computer Aided Software Engineer-
ing) tool, which is augmented by capabilities for formal specification and verifi-
cation. The ultimate goal is to make the verification process transparent for the
user with respect to the informal object-oriented model.

Formal and Informal Specifications. Formal methods require formal specifica-
tions, but in software engineering practice, informal specifications are commonly
used. We cannot expect everyone who needs to deal with specifications—e.g.
customers, managers, or software engineers—to master a formal notation (cf.
[10] p. 131 “. . . most customers don’t understand formal specifications and are
reluctant to accept it as a system contract”). This motivates the need for a sys-
tematic link between formal and informal specifications: to support authoring
of specifications as well as synchronizing and maintaining formal and informal
versions of specifications, and to present the specifications to different audiences
using different levels of formality.

The Object Constraint Language. The Object Constraint Language (OCL) is a
formal specification language used to specify precise requirements for object-
oriented software systems [11]. It is a sub-standard of the Unified Modelling
Language (UML) [12]. An OCL specification is always given in the context of
some particular UML model,1 and it consists of a boolean expression which

1 In this paper, a UML model is simply a class diagram, containing classes, attributes,
methods and associations. Side-effect free methods are called queries.

54 D.A. Burke and K. Johannisson

is used as an invariant of a class, or as a pre-condition or post-condition of a
method. The attributes, queries and associations from the UML model, as well as
a library of predefined types (e.g. integers, strings and collections) are available
for constructing OCL expressions. For example, given a class OwnerPIN, with
attributes tryCounter and maxTries, we can specify the requirement “the try
counter is at most the maximum number of tries” using the OCL:

context OwnerPIN
inv: self.tryCounter <= self.maxTries

As we see in this example, each OCL expression is given in the context of a
particular class, and the expression self refers to an instance of that class.

2.3 The Java Card API Specification

Java Card technology [5] allows software developers to write Java programs that
run on smart cards and other devices with very limited memory and processing
capabilities. The Java Card API (Application Programming Interface) is a set
of library classes used in Java Card programs. It is a subset of the standard Java
API and is specifically designed for smart card programming.

Due to the size and nature of the applications that use Java Card, formal
methods could be useful in verifying the correctness of these programs. With
this in mind, OCL constraints have been defined for the Java Card API in [13]
(based on JML specifications in [14]). These OCL specifications provided the
basis for a case study using our translation tool. The specifications of 37 Java
classes were fully translated, and examples from this are used throughout this
paper. Details on the case study are available in [15] and on the web [16].

3 Motivating Example

In this section we will take an OCL specification from the Java Card API case
study (Fig. 1) and show how it gets translated into natural language. For com-
parison, we start with a translation produced with an earlier version of our
system, Fig. 2. Then we discuss some possible improvements of this translation,
which leads to the translation in Fig. 3, which is the output from the current
system. The machinery behind the improvements will be explained later.

3.1 The OCL Specification

We consider the OCL specification for the method check of the class OwnerPIN.
OwnerPIN stores the PIN code of a smart card, and keeps track of the maximal
number of attempts allowed to present the correct PIN before the card is locked.
The purpose of the method check is to compare a given PIN number with
the PIN value in the OwnerPIN class itself. If they match and the PIN is not
blocked, it sets the validated flag and resets the try counter to its maximum.
If it does not match, it decrements the try counter and, if the counter has
reached zero, blocks the PIN. The try counter is specified in the first element of

Translating Formal Software Specifications to Natural Language 55

context OwnerPIN
def: let tryCounter = self.triesLeft->at(1)

context OwnerPIN::check(pin: Sequence(Integer),
offset: Integer, length: Integer): Boolean

post: self.tryCounter = 0 implies result = false
post: (self.tryCounter > 0 and pin <> null and offset >= 0 and length >= 0

and offset+length <= pin->size()
and Util.arrayCompare(self.pin, 0, pin, offset, length) = 0

) implies (result = true and self.isValidated() and tryCounter = maxTries)
post: (self.tryCounter > 0 and not (pin <> null and offset >= 0 and length >= 0

and offset+length <= pin->size()
and Util.arrayCompare(self.pin, 0, pin, offset, length) = 0)

) implies (not self.isValidated() and self.tryCounter = tryCounter@pre-1 and
((not excThrown(java::lang::Exception) and result = false)

or excThrown(java::lang::NullPointerException)
or excThrown(java::lang::ArrayIndexOutOfBoundsException)))

Fig. 1. OCL specification from the Java Card API

the attribute triesLeft, which is an array. The validated flag can be accessed
using the isValidated() method. The PIN comparison can be done using the
arrayCompare() method which is defined in the Util class of the JavaCard API.
Fig. 1 shows the OCL specification of check (including a definition of a helper
attribute tryCounter).

3.2 A First Attempt

In Fig. 2 we show the translation of the OCL specification produced by an earlier
version of our system. The English text is basically correct, but it is clumsy and
very hard to read.

for the class OwnerPIN introduce the following definition : the tryCounter is defined as the element

at index 1 of the triesLeft of the ownerPIN for the operation check (pin : Seq(Integer) , offset :

Integer , length : Integer) : Boolean of the class javacard::framework::OwnerPIN the following holds

: the following postconditions should hold : (*) if the tryCounter of the ownerPIN is equal to 0 , the

result is equal to false (*) if the tryCounter of the ownerPIN is greater than 0 and pin is not equal

to null and offset is at least 0 and length is at least 0 and offset plus length is at most the size of

pin and the query arrayCompare (the pin of the ownerPIN , 0 , pin , offset , length) to Util is

equal to 0 , the result is equal to true and the query isValidated () holds for the ownerPIN and the

tryCounter of the ownerPIN is equal to the maxTries of the ownerPIN (*) if the tryCounter of the

ownerPIN is greater than 0 and it is not the case that pin is not equal to null and offset is at least 0

and length is at least 0 and offset plus length is at most the size of pin and the query arrayCompare

(the pin of the ownerPIN , 0 , pin , offset , length) to Util is equal to 0 , it is not the case that

the query isValidated () holds for the ownerPIN and the tryCounter of the ownerPIN is equal to

the tryCounter of the ownerPIN at the beginning of the Operation minus 1 and it is not the case

that an exception is thrown and the result is equal to false or a nullPointerException is thrown or

an arrayIndexOutofBoundsException is thrown

Fig. 2. Translation of OCL specification (before)

56 D.A. Burke and K. Johannisson

3.3 An Improved Translation

Fig. 3 shows an improved version of the translation: the output of the current
version of our system. Below we go through the improvements made. Each one
is quite simple in itself, but the end result is in our opinion a text of acceptable
quality, which shows that our approach works for non-trivial specifications.

for the class OwnerPIN introduce the following definition :

– the try counter is defined as the element at index 1 of the triesLeft attribute

for the operation check (pin : Sequence(Integer) , offset : Integer , length : Integer) :
Boolean of the class javacard::framework::OwnerPIN ,
the following post-conditions should hold :

– if the try counter is equal to 0 then this implies that the result is equal to false
– if the following conditions are true

• the try counter is greater than 0
• pin is not equal to null
• offset is at least 0
• length is at least 0
• offset plus length is at most the size of pin
• the query arrayCompare (the pin , 0 , pin , offset , length)1 on Util is

equal to 0
then this implies that the following conditions are true

• the result is equal to true
• this owner PIN is validated
• the try counter is equal to the maximum number of tries

– if the try counter is greater than 0 and at least one of the following conditions is not true
• pin is not equal to null
• offset is at least 0
• length is at least 0
• offset plus length is at most the size of pin
• the query arrayCompare (the pin , 0 , pin , offset , length)2 on Util is

equal to 0
then this implies that the following conditions are true

• this owner PIN is not validated
• the try counter is equal to the previous value of the try counter minus 1
• at least one of the following conditions is true

∗ an exception is not thrown and the result is equal to false
∗ a null pointer exception is thrown
∗ an array index out of bounds exception is thrown

1 Compares the specified source array, beginning at the specified position, with the destination
array beginning at the specified position from left to right. A result of 0 indicates that the arrays
are equal.

2 Compares the specified source array, beginning at the specified position, with the destination
array beginning at the specified position from left to right. A result of 0 indicates that the arrays
are equal.

Fig. 3. Translation of OCL specification (after)

Formatting. Two of the most important problems in Fig. 2 are (1) the specifica-
tion is just a big piece of text, where the structure is very hard to discern, and
(2) it is hard or impossible to determine the scope of the and:s and or:s, which

Translating Formal Software Specifications to Natural Language 57

makes the specification ambiguous. To address these problems we introduce for-
matting: line breaks are inserted, keywords are printed in bold and arguments
to the method are italicized. Furthermore, lists of constraints, as well as se-
quences of and/or statements are made into bullet lists. The formatting consists
of HTML or LATEX tags in the text, what we see in Fig. 3 is the LATEX version.

Negation. The scope of the negations is hard to determine, and negating sen-
tences as in e.g. “it is not the case that an exception is thrown” is a clumsy
construction. Using “an exception is not thrown” instead solves both these prob-
lems.

Making Use of the Context. In Fig. 2 the text “of the ownerPIN” is used very
frequently. Since the specification is given as postconditions in the context of a
method of the class OwnerPIN, we should be able to just leave out all occurrences
of “of the ownerPIN”, resulting in a much less repetitive text. (In OCL we are
allowed to do the same thing, by leaving out self.) This can be seen as a simple
case of referring expressions generation [6].

Domain-Specific Vocabulary. Based on the type and capitalization of identifiers,
we can improve the translation of domain-specific vocabulary. For instance, the
class OwnerPIN can be automatically translated as “owner PIN”, instead of just
“ownerPIN” as in Fig. 2.

The attributes triesLeft and maxTries are similarly translated as “the tries
left” and “the max tries” by default. Although these translations are quite ade-
quate, we can improve this even further by making manual changes. Thus, using
our system we can by hand change the translation to “the triesLeft attribute”
and “the maximum number of tries”, for these attributes.

Two methods are used in this OCL constraint: isValidated and array-
Compare. For isValidated, which returns a boolean, we introduce some simple
heuristics which by default translates it to “. . . is validated” instead of “the query
isValidated() holds”. The second method used, arrayCompare, gets linearized
to “the query arrayCompare (the pin, 0 , pin , offset , length) on
Util”. Unfortunately this method is not so easily translated into simple English.
The task it carries out does not fit nicely as part of the translated constraint. To
solve this problem, we use the ‘note’ facility provided in the grammar. We can
by hand add a note for the method, and this will then be displayed as a tool-tip
when HTML formatting is used or, as in this case, as a footnote when LATEX
formatting is used (a current limitation is the needless duplication of footnotes).

4 System Overview

The system is built around a GF grammar for specifications: there is an abstract
syntax giving rules for how to form abstract syntax trees of specifications, as well
as three concrete syntaxes to present abstract syntax trees in OCL, English and
German, respectively.

58 D.A. Burke and K. Johannisson

Fig. 4. From OCL to Natural Language

Given this grammar, the GF system provides us with a syntax editor where
we can edit specifications in OCL, English and German in parallel. We also
get parsers and linearizers for OCL and (fragments of) English and German,
which we can use for translating e.g. OCL specifications into English, by first
parsing OCL into an abstract syntax, and then linearizing the tree into
English.

However, our system does not just consist of a GF grammar and the func-
tionality provided directly by GF. What makes things more complex is that (1)
parts of the grammar are dynamically generated depending on the context (the
grammar is not closed), and (2) we use a separate program for parsing OCL
specifications and (3) turning them into GF abstract syntax trees. These exter-
nal programs (as well as the GF system itself) are implemented in the functional
language Haskell. Fig. 4 shows the overall structure of the system.

There are two current prototypes of our system: one which allows syntax
editing of specifications in OCL and English inside KeY, another which allows
batch-translation from OCL to English (yet to be integrated more closely with
KeY). The concrete German grammar has so far only been used for small ex-
amples [17]. The system is available for download [16].

Syntax editing of specifications is briefly described in [2], except for the in-
tegration with the KeY system. In this paper we focus on taking existing OCL
specifications into English.

4.1 External Programs

Grammar Generation. An OCL specifications uses domain specific vocabulary
as defined by a UML model. When a user adds e.g. a class or an attribute to
the model, he also extends the language of specifications of that model. We
therefore generate GF grammar modules from the UML model to dynamically
extend the grammar with domain specific vocabulary. This is described in more
detail in Sect. 5.2. The general idea of dynamically extending a grammar with
user-defined concepts is also used in [18].

OCL text UML
model

GF syntax
tree

GF grammar
modules

(generated)

Syntax Tree

GF grammar
modules
(static)

parsing / typechecking

GF

OCL English German

Translating Formal Software Specifications to Natural Language 59

External Parser. Given an OCL specification and a UML model, the OCL is
first parsed using a standard context free parser, and then type checked with
respect to the UML model, resulting in an annotated syntax tree of the OCL
specification. This step is described in detail in [19].

The original motivation for adding an external parser was that the parser
derived by GF for our particular grammar had termination problems.2 However,
there are also more general reasons for using an external parser: (1) Efficiency:
An external, context free parser for a formal language—in our case OCL—is
more efficient than a parser derived from a GF grammar. (2) Modularity: The
GF abstract syntax does not have to handle all particularities of OCL. For
instance, OCL has various implicit forms which require disambiguation (see e.g.
[19]). This can be done by the external parser and typechecker.

Transformation Into GF Trees. The annotated trees returned by the external
parser are transformed into GF abstract syntax trees. The context free structure
for most parts maps into the GF abstract syntax in a straightforward way.
However, we also perform some structural transformations in order to improve
the quality of the natural language, e.g. the transformation described in Sect. 5.3.
These transformations could probably be avoided by extending the GF abstract
and concrete syntax instead, but we believe that expressing the transformations
in the Haskell programming language instead of the GF formalism is in this case
a simpler and more modular solution.

5 Grammar Engineering

We start this section by giving a very brief introduction to our GF grammar,
to give a general idea of what writing an application grammar for specifications
amounts to (Sect. 5.1). We then explain how the improvements described in the
motivating example section are implemented in the GF grammar. There is not
enough room for describing everything, so we give two representative examples:
dynamically extending the grammar with domain specific concepts (Sect. 5.2),
and formatting (Sect. 5.3). Throughout this section, we make use excerpts from
the grammars without explaining all details of the GF formalism.

5.1 An Application Grammar for Specifications

Representing Specifications: Abstract Syntax. In a typical GF application gram-
mar, the abstract syntax part is used for defining a semantic domain, without
any linguistic considerations. We define categories (types) and functions which
gives the rules for how to form trees in these categories. In our case, we are

2 As explained in [2], this is because our grammar makes use of dependent types in
such a way that the derived GF parser, which in a first step disregards dependent
types, contained cyclic rules. In the meantime, this problem has been given a general
solution in [20] (the implementation of which is in progress).

60 D.A. Burke and K. Johannisson

interested in the domain of (OCL) specifications. We consider OCL specifications
as expressions formed using the attributes and queries of the classes in the UML
model (including the predefined OCL types). For each class in the UML model,
there will be a corresponding GF function c as well as a (dependent) category
Instance c representing expressions of that class. As an example, this is how
the size query of the OCL library class String (which returns the length of a
string as an integer) is represented in GF abstract syntax judgements:

cat Class; cat Instance (c:Class); fun StringC, IntegerC: Class;
fun size : Instance StringC -> Instance IntegerC;

This defines the GF function size as taking trees of type Instance StringC and
returning something of type Instance IntegerC. Note that with the dependent
category Instance, we have introduced type-checking into the grammar: only trees
representing type correct specifications can be built. As already mentioned, this
leads to complications for the GF derived parser, see [2] for an explanation of this.

There are many choices to be made on exactly how to model specifications in
abstract syntax, most of which we do not discuss here. One example, however,
is introducing a category Sent for representing sentences. It is for instance used
for the equality operator, with which we can state that any two instances x and
y of the same class c are equal:

cat Sent;
fun equal : (c:Class) -> (x,y : Instance c) -> Sent;

The introduction of Sent is motivated by the fact that in natural language, we
want to distinguish between expressions and sentences. In OCL, however, there
is no such distinction – sentences just correspond to an expression of boolean
type. This is an example of an interlingua problem: if a semantic distinction is
made in one language, it has to be introduced into the abstract syntax, even if
it is not present in the other languages.

Using the Resource Grammars: Concrete Syntax. In the concrete syntax, we
give linearization rules presenting abstract syntax trees in English and German
(we will not discuss the concrete syntax for OCL). To each category C in the
abstract syntax, we must associate a record type: the linearization category of
C. For each function in the abstract syntax, we define a linearization rule which
builds a record in the corresponding linearization category. For instance, we
might start with the abstract category Class, to be treated like common noun
phrases in concrete syntax:3

param Number = Sg | Pl;
lincat Class = {s : Number => Str};
lin IntegerC = {s = table {Sg => "integer"; Pl => "integers"}};

3 This example is simplified: in the real grammar, Class has a more complex lineariza-
tion category which represents something more than just common noun phrases.

Translating Formal Software Specifications to Natural Language 61

Here we define a parameter type for number. The linearization category of Class
is a record type which has one field s, which is a string inflected in number. Then
we define the linearization of IntegerC as the noun “integer” (in singular and
plural form). To complete the concrete syntax, we would then have to go on
defining lincat:s and lin rules for the rest of the abstract syntax types and
functions, along with the required record and parameter types. However, we
instead make use of the GF resource grammar library [17].

The resource grammars provide an API of linguistically motivated record
and parameter types, along with utility functions to be used in linearization
rules. For instance, there is a parameter type Number, as well as a record type
CN for common noun phrases. Using the resource grammars raises the level of
abstraction in the concrete syntax: instead of dealing directly with issues of
e.g. inflection or word order, we can use the linguistic structures provided by
the resource API. As long as we use only the API, all type-correct uses of the
resource grammar preserve grammaticality. Since the API is available for seven
languages including English and German, we can often reuse the same concrete
syntax. Without explaining any details, an example of our use of the resource
grammar is the following English linearization rule for the size method:

lin size x = DefOneNP (AppFun (funOfCN
(useN (nNonhuman "length"))) x);

The functions used on the right hand side in the linearization rule are part of
the resource grammar API. The linearization of the tree size x using this rule
will be “the length of x”. To provide the German linearization “die Länge von
x”, the rule is almost the same:

lin size x = DefOneNP (AppFun (funVonCN (useN (nFrau "Länge")))x);

5.2 Domain-Specific Vocabulary

In order to translate from OCL to English, the grammar needs to contain in-
formation about the UML model upon which the OCL is based. A grammar
generation program therefore generates GF modules based on the UML model.
The automatic generation does not always produce the most suitable translation,
therefore it is also possible for the user to manually improve the translation by
modifying the generated grammars, in particular the linearization rules in the
concrete syntax.

To aid in the construction of the domain-specific concrete module, a resource
module has been defined, which contains many operations that are useful when
linearizing classes, attributes etc. We call this the API for Domain-specific Vo-
cabulary. This API provides a layer of abstraction which hides some of the
complexity of the rest of the grammar, making it easier to generate the lin-
earizations for the domain entities. It also makes subsequent hand modifications
possible without full knowledge about GF and the resource grammars.

Using the API. Although the API uses concepts taken from the OCL grammar
and from the resource grammars, the interface provided is simple enough to not

62 D.A. Burke and K. Johannisson

require a deep knowledge of the underlying grammars. We will consider OCL
classes as an example. The following operation is provided for constructing the
linearization of a class (ClassL is the linearization category of Class):

oper mkClass: CN -> Str -> ClassL;

Classes are defined as consisting of a common noun phrase (CN) that corresponds
to the class name as it will appear in natural text, and an identifier (a string),
which is the actual name of the class in the UML diagram. The class identifier
is used when formally specifying the class name.

Common ways of constructing the CN are included in the API, such as con-
structing a CN from a String, or adding an adjective to the CN. Irregular ways of
constructing a CN can be found in the resource grammar modules. Take for exam-
ple the class OwnerPIN, which is linearized using operations defined in the API.

lin OwnerPIN = mkClass (adjCN "owner" (strCN "PIN")) "OwnerPIN";

This will result in the class name being represented as a common noun phrase
in natural text: “the maximum PIN size of the owner PIN is greater than 0” while
the class identifier is used in a more formal setting: “for the class OwnerPIN the
following invariants hold:”.

Grammar Generation. The grammar generator uses some heuristics to derive a
reasonable linearization for a domain entity (a class, an attribute, a method or
an association) from its name and type. Given a UML model, it produces an
abstract syntax module with one function for each domain entity, and a con-
crete module with corresponding English linearizations. A concrete module with
OCL linearizations is also generated. The concrete English module makes use
the API for domain-specific vocabulary, and the resource grammars. Since GF
supports separate compilation of modules, only these generated modules need
to be recompiled whenever the UML model changes, not the whole grammar.

The heuristics is based on types, and on splitting an identifier into words
based on capitalization. E.g., the identifier OwnerPIN is split into the strings
“owner” and “PIN”. Since we also know the type, i.e. in this case that OwnerPIN
is the name of class, we build a noun “owner PIN” as described just above.
Another simple rule is special handling of boolean properties that start with
“is”, e.g. isValidated becomes a sentence saying “. . . is validated”.

The heuristics for grammar generation obviously depends on the natural
language used for identifiers, in this case English. A good heuristics for German
would be more complex, e.g. it would require access to a lexicon for determining
the gender of nouns. The heuristics also requires a consistent convention for word
boundaries in identifiers (e.g. is it isValidated or is validated?).

Modifying the Grammar. The generated grammar does not always succeed in
producing the best translation. Using the API it is possible to make hand-
modifications to the generated grammar without too much difficulty. For ex-
ample, the attributes triesLeft and maxTries are translated as “the tries left”
and “the max tries” by default using the generated judgements we see below.

Translating Formal Software Specifications to Natural Language 63

lin maxTries = mkSimpleProperty (adjCN "max" (strCN "tries"));
lin triesLeft = mkSimpleProperty (adjCN "tries" (strCN "left"));

Although these translations are quite adequate, we can improve them by
making manual changes to the generated grammar using some of the operations
provided in the API. Thus, using the judgements below, we can construct the text
“the triesLeft attribute” and “the maximum number of tries”, for these attributes.

lin maxTries = mkSimpleProperty (ofCN (adjCN "maximum"
(strCN "number")) (strCN "tries"));

lin triesLeft = mkSimpleProperty (attrCN "triesLeft");

5.3 Grammar-Based Formatting

The use of formatting in the translated text has a dramatic effect on the readabil-
ity of the output. As we see in the motivating example in Fig. 3, the formatting
includes e.g. breaking the text into paragraphs, using different fonts for headings
and argument variables, and presenting various structures in the form of bullet
lists.

Most of this formatting is done completely on the level of concrete syntax: An
interface module has been defined that contains operations required to perform
formatting tasks, without specifying an implementation. This interface can then
be implemented in many different ways using different instances. Currently three
instances exist, allowing the possibility to have no formatting, HTML formatting
or LATEX formatting. These instances do not define their own pretty-printing
rules, instead they simply use formatting tags leaving the actual layout to be
handled by the LATEX and HTML rendering engines. The linearization rules of
the concrete syntax then makes use of the operations specified by the formatting
interface.

Using Lists for Aggregation. There is one exception to the rule that all for-
matting is done just in concrete syntax: formatting lists of conjunctions and
disjunctions as bullet lists. This requires changes also in the abstract syntax, as
well as support from the external program which transforms the result of the
context free OCL parser into GF abstract syntax.

To treat lists of conjunctions (the machinery for disjunctions is just the same)
in a special way we simply introduce a new category AndList in the abstract
syntax, along with functions for creating such lists, and converting them into
sentences:

fun oneAnd : Sent -> Sent -> AndList;
fun consAnd : Sent -> AndList -> AndList;
fun andList2Sent : AndList -> Sent;

The base case oneAnd takes two sentences and builds an AndList, containing
just one conjunction. The function consAnd prepends a sentence to an existing
AndList. Once the list is built, andList2Sent allows us to consider it as a
sentence.

64 D.A. Burke and K. Johannisson

A list containing just one conjunction, i.e. a tree oneAnd x y would be lin-
earized just as “x and y”, while using consAnd should result in a bullet list,
saying “the following conditions are true: . . . ”. However, this is dealt with in the
concrete syntax (which is omitted here), the abstract syntax just provides the
required structure. In fact, we use the same kind of abstract syntax for sums and
products, where we are not interested in formatting. In that case, the problem
is to translate e.g. an OCL expression 2+3 as “2 plus 3”, but 1+2+3 as “the sum
of 1, 2 and 3”.

When translating OCL to English, we must find OCL expressions where lists
of conjunctions occur, and make sure that they are treated as AndLists. This can
be seen as simple aggregation problem [6]. As mentioned above, this step is not
performed inside the grammars, but in the transformation from context free OCL
syntax trees (as returned by the external parser) to GF abstract syntax trees.

6 Related Work

Natural Language Generation (NLG) is described in [6] as producing under-
standable natural language text from a non-linguistic representation of infor-
mation. This very general description also fits GF linearization: Linearization
can be considered as a two-step procedure, where the linearization rules go from
non-linguistic abstract syntax to linguistically motivated resource grammar con-
structions. The resource grammar implementation then takes the step to surface
strings in natural language. However, while linearization is therefore clearly more
than just linguistic realization (cf. the discussion in [6] on realization as the in-
verse of parsing), it is much simpler than a typical NLG system. Linearization
rules (and the resource grammars) are written in GF concrete syntax, a re-
stricted functional language, and linearization rules are always compositional.
In contrast, [6] describes a typical NLG system architecture as a pipeline con-
sisting of the phases text planning, sentence planning and linguistic realization,
along with separate intermediate representation formats.

When using our system for translating OCL to English (as opposed to syntax
editing), there is also the external OCL parser / typechecker and grammar gen-
eration, and the architecture is more similar to that of a compiler than a NLG
system. We also do some transformations to the GF syntax trees in an external
program. Some of these transformations could be described in terms of NLG
concepts, e.g. aggregation (Sect. 5.3). They are also similar to some of the ideas
in [21], which describes generation of natural language text from formal proofs
as a process resembling code generation in a compiler.

7 The Case Study in Numbers

The Java Card API case study consists of OCL specifications of 37 classes, the
word count of the English translation is close to 17000. The generated grammar
modules of domain-specific vocabulary contain about 1100 concepts, i.e. 1100 ab-
stract syntax functions, each one with a corresponding linearization rule. 361 of

Translating Formal Software Specifications to Natural Language 65

these concepts are actually being used in the translated specifications. By-hand
modifications were made to the linearization rules of 73 of these 361 concepts,
i.e. 20% of the used domain-specific concepts needed modifications. 18 of these
modifications are of a trivial nature and could probably be automated if one
introduces domain-specific heuristics for grammar generation, which leaves 15%
of the used domain-specific concepts that require non-trivial modifications.

8 Conclusion

We have presented a tool for translating formal OCL specifications into natu-
ral language based on GF grammars. By adding a domain-specific vocabulary
API, formatting, and other stylistic improvements, we achieve a translation of
a non-trivial case study of OCL specifications which is acceptable to a human
reader. Relatively few by-hand modifications using the API were necessary; the
modifications are made on the grammar level, but do not require linguistic or GF
expertise. Although we add external programs, the compositional and declara-
tive GF formalism remains the centre of our work: the external programs are
used either to generate GF grammar modules, or to manipulate GF abstract
syntax trees. The tool and the Java Card API case study are available on the
web [16].

8.1 Future Work

Important lines of future work include: (1) Further improvements to the natural
language, e.g. by more sophisticated use of aggregation and referring expressions
generation. (2) A more formal evaluation of the quality of the generated natural
language. (3) Integration into the KeY system, most importantly providing a
user interface for manipulating domain-specific vocabulary, based on the API
we have defined.

Acknowledgements

We thank Reiner Hähnle, Aarne Ranta and the anonymous referees for valuable
suggestions on how to improve the paper.

References

1. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
Mostowski, W., Roth, A., Schlager, S., Schmitt, P.H.: The KeY tool. Software and
System Modeling 4 (2005) 32–54

2. Hähnle, R., Johannisson, K., Ranta, A.: An authoring tool for informal and for-
mal requirements specifications. In Kutsche, R.D., Weber, H., eds.: Fundamental
Approaches to Software Engineering. Number 2306 in LNCS (2002)

3. Ranta, A.: Grammatical Framework: A Type-theoretical Grammar Formalism.
The Journal of Functional Programming 14 (2004) 145–189

66 D.A. Burke and K. Johannisson

4. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Napoli (1984)
5. Sun Microsystems: Java card homepage (2004) http://java.sun.com/products/

javacard/.
6. Reiter, E., Dale, R.: Building applied natural language generation systems. Journal

of Natural Language Engineering 3 (1997) 57–87
7. Ranta, A.: Grammatical Framework homepage (2005) www.cs.chalmers.se/

∼aarne/GF.
8. Khegai, J., Nordström, B., Ranta, A.: Multilingual syntax editing in GF. In

Gelbukh, A., ed.: CICLing-2003, Mexico City, Mexico. LNCS, Springer (2003)
9. Ranta, A.: The GF resource grammar library (2004) http://www.cs.chalmers.se/

∼aarne/GF/lib/resource/.
10. Sommerville, I.: Software Engineering. Seventh edn. Addison Wesley (2004)
11. The Object Management Group: Object constraint language specification (2004)

http://www.omg.org/docs/formal/03-03-13.pdf.
12. The Object Management Group: Unified modelling language homepage (2004)

http://www.uml.org.
13. Larsson, D., Mostowski, W.: Specifying Java Card API in OCL. In Schmitt, P.H.,

ed.: OCL 2.0 Workshop at UML 2003. Volume 102C of ENTCS., Elsevier (2004)
3–19

14. Meijer, H., Poll, E.: Towards a full formal specification of the Java Card API. In
Attali, I., Jensen, T., eds.: Smart Card Programming and Security. Number 2140
in LNCS, Springer (2001) 165–178

15. Burke, D.A.: Improving the natural language translation of formal software speci-
fications. Master’s thesis, Chalmers University of Technology, SE-412 96 Göteborg,
Sweden (2004)

16. Johannisson, K.: OCL to natural language tool homepage (2004) http://www.cs.
chalmers.se/∼krijo/gfspec/.

17. Daniels, H.J.: Eine deutsche Grammatik für OCL. Studienarbeit (2003) http:

//www.cs.chalmers.se/∼krijo/gfspec/.
18. Hallgren, T., Ranta, A.: An extensible proof text editor. In Parigot, M., Voronkov,

A., eds.: Logic for Programming and Automated Reasoning, LPAR. LNAI 1955,
Springer (2000) 70–84

19. Johannisson, K.: Disambiguating implicit constructions in OCL (2004) Online
proceedings of OCL and Model Driven Engineering Workshop at UML 2004,
http://www.cs.kent.ac.uk/projects/ocl/oclmdewsuml04/description.htm.

20. Ljunglöf, P.: Expressivity and complexity of the Grammatical Framework.
PhD thesis, Chalmers University of Technology, Göteborg University, SE-412 96
Göteborg, Sweden (2004)

21. Coscoy, Y., Kahn, G., Thery, L.: Extracting text from proofs. In Dezani-
Ciancaglini, M., Plotkin, G., eds.: Proc. Second Int. Conf. on Typed Lambda
Calculi and Applications. Volume 902 of LNCS. (1995) 109–123

On the Selective Lambek Calculus�

Marcelo da S. Corrêa1 and E. Hermann Haeusler2

1 Instituto de Matemática, Universidade Federal Fluminense,
Rua Mario S. Braga s/n, Niterói RJ 24020-140, Brazil

ganmarc@vm.uff.br,
correa@informatik.uni-tuebingen.de

2 Departamento de Informática,
Pontif́ıcia Universidade Católica do Rio de Janeiro,

Rua Marquês de São Vicente, 225,
Rio de Janeiro, RJ 22453-900, Brazil

hermann@inf.puc-rio.br

Abstract. An intermediate logical system in comparison with the non-
associative (NL) and the associative Lambek Calculus(L) is obtained by
extending their language by means of a so-called “combining permission”,
which is used to regulate the introduction of a product formula in the
scope of a derivation and to impose a control on applications of the
association structural rules. A cut elimination theorem for such a system,
so-called Selective Lambek Calculus, is presented.

1 Introduction

The variants of the Lambek Calculus (L), formerly Calculus of Syntactic Types[9],
have been in evidence nowadays due to its many applications in linguistics in
the scope of the type logic categorial grammars[15]. The non-associative Lambek
Calculus(NL) [10], considered the pure logic of residuation [14], has been settled
as the basic logic of a substructural hierarchy of logics concerning the resource
sensitivity in the context of the Gentzen systems. While the Gentzen presentation
for NL is characterized by the absence of structural rules, other systems can be
obtained from it by including general structural rules for Associativity, as L,
or for Permutation, as NLP, or both as LP[2], undermining the sensitivity to
aspects of resource structure of NL(quoted from [8]).

There are approaches in which the resource sensitivity is partially undermined
by considering structural modalities, as in the system NL [13], or combinators
as in the Structurally Free Logic[7]. In such systems the structure of terms marked
with a given structural modality or those ones affected by a combinator can
be changed or they can be freely permutated with other term, as representing

� This work was Elaborated During a Post-Doctoral Staying of the First Author in the
Wilhelm-Schickard-Institut, University of Tübingen and it was Partially Supported
by the Brazilian Foundation CAPES (PROBRAL/CAPES/DAAD-175/04).

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 67–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 M. da S. Corrêa and E.H. Haeusler

a special and particular property of such elements. In another direction, we
propose to regain associativity adopting special association structural rules and
performing a kind of contextual analysis in the sense that the structure of a
term could be changed if the new structure “makes sense”, i.e., if it is actually
possible to combine the considered expressions to form an acceptable one. This is
captured by a notion of “combining permission” used to regulate the introduction
of a product formula in the scope of a derivation and also to impose a control
on the application of an association structural rule, by means of incorporating
special premises into the rule for introducing the product operator at the right of
a sequent and into the association structural rules. This approach was adopted
by the authors in a first version of the system Selective Lambek Calculus[5],
here denoted by SL. In this work, we change deeply the presentation of the rules
in order to obtain a cut elimination theorem for SL.

2 Relaxing the Non-associative Lambek Calculus

The language F of formulas (or types) of the non-associative Lambek Calculus
NL is recursively obtained by closing a denumerable set A of atomic formulas (or
basic types) under the following binary connectives (or type forming operators):
one binary (tensor) product • and its left and right residual implications, denoted
here by ← and →, respectively: F ::= A | F ← F | F • F | F → F .

We shall consider that atomic formulas will be denoted by Latin capital letters
and meta-variables over type formulas by Greek small letters.

In a Gentzen presentation of NL, a sequent consists of an antecedent (a non-
empty rooted binary tree) and a succedent (a formula) separated by an operator
�, such that binary trees are written as terms formed from formulas and the
structural operator (·, ·). The language T of terms is recursively determined as
T ::= F | (T , T) .

The Greek capital letter Γ , with or without a subscript or a superscript,
is used as meta-variable over terms. The notation Γ [Γ1] denotes a term Γ
containing a distinguished occurrence of a sub-term Γ1 and Γ [Γ2] is the result
of replacing exactly such an occurrence of Γ1 in Γ by Γ2.

In the presentation of the inference rules for NL, on the following,
distinguished occurrences of subterms in upper and bottom sequents are
assumed to occupy the same position in a term Γ , as indicated in [14].

A Gentzen presentation for the associative Lambek Calculus L can be obtained
from NL by considering the following association structural rule, in which the
double line indicates that it may be applied in both directions.

Γ [((Γ1, Γ2), Γ3)] � δ
Γ [(Γ1, (Γ2, Γ3))] � δ

A

A cut elimination theorem can be proved for both systems[9, 1, 6]. Besides,
they could be compared by means of the following characteristic theorems and
derived rules of inference, as presented in [14] but which are related to some

On the Selective Lambek Calculus 69

α � α
ax

Γ ′ � α Γ [α] � γ

Γ [Γ ′] � γ
cut

Γ1 � α Γ2 � β

(Γ1, Γ2) � α • β
•R Γ [(α, β)] � γ

Γ [α • β] � γ
•L

(α, Γ) � β

Γ � α → β
→R Γ1 � α Γ [β] � γ

Γ [(Γ1, α → β)] � γ
→L

(Γ, α) � β

Γ � β ← α
←R Γ1 � α Γ [β] � γ

Γ [(β ← α, Γ)] � γ
←L

Fig. 1. A sequent system for NL

basic principles of Lambek[9]. In fact, all of the items (1) to (11) hold in L, but
only (1) to (6) hold in NL.

1. Application: α • (α→ β) � β and (β ← α) • α � β
2. Co-application: α � β → (β • α) α � (α • β) ← β
3. Monotonicity: If α � β and δ � γ, then α • δ � β • γ
4. Isotonicity: If α � β, then γ → α � γ → β

and α← γ � β ← γ
5. Antitonicity: If α � β, then β → γ � α→ γ

and γ ← β � γ ← α
6. Lifting: α � β ← (α→ β) and

α � (β ← α) → β
7. Geach (main functor): α→ β � (γ → α) → (γ → β) and

β ← α � (β ← γ) ← (α← γ)
8. Geach (secondary functor): α→ β � (α→ γ) ← (β → γ) and

β ← α � (γ ← β) → (γ ← α)
9. Composition: (α→ β) • (β → γ) � α→ γ and

(γ ← β) • (β ← α) � γ ← α
10. Restructuring: (α→ β) ← γ � α→ (β ← γ) and

α→ (β ← γ) � (α→ β) ← γ
11. (De)Currying: (α • β) → γ �! β → (α→ γ) and

γ ← (α • β) �! (γ ← β) ← α .

The derivations for the items (7) to (11) are usually based on the general
associativity of the operator “,” that corresponds also to a structural postulate
of associativity for • [14, 9]. However, we could prove the properties (7) to (10)
if we add two extra rules, for introducing the residual implications in the left
side of a sequent, to the collection of rules of NL, as follows.

Γ1 � α Γ [(β, Γ2)] � γ
Γ [(Γ1, (α→ β, Γ2))] � γ

→L∗ Γ1 � α Γ [(Γ2, β)] � γ
Γ [((Γ2, β ← α), Γ1)] � γ

←L∗

70 M. da S. Corrêa and E.H. Haeusler

To illustrate the applications of these rules, we present a derivation of only
one sequent of each Geach (secondary functor) and Restructuring properties.

α � α

β � β γ � γ

(β, β → γ) � γ
→L

(α, (α → β, β → γ)) � γ
→L∗

(α → β, β → γ) � α → γ
→R

α → β � (α → γ) ← (β → γ)
←R

γ � γ

α � α β � β

(α, α → β) � β
→L

((α, (α → β) ← γ), γ) � β
←L∗

(α, (α → β) ← γ) � β ← γ
←R

(α → β) ← γ � α → (β ← γ)
→R

As it is shown in [14], example 2.19, the implicational (determined by the
Geach, Composition and Restructuring properties) and the product version
of associativity are interderivable. Hence the rules → L∗ and ← L∗ imply full
associativity. In fact, a derivation of a part of the associativity law can be
obtained as it is done in [14], but applying in this case the rule →L∗ to obtain
a derivation (†) for the right upper sequent of the cut rule:

π
(α, (β, γ)) � δ

†
δ � (α• β)• γ

(α, (β, γ)) � (α• β)• γ
cut

(α, (β• γ)) � (α• β)• γ
•L

α• (β• γ) � (α• β)• γ
•L † ≡

δ1 � δ1

δ2 � δ2 δ3 � δ3

(δ2, (δ2 → δ3)) � δ3
→L

δ1, ((δ1 → δ2), (δ2 → δ3)) � δ3
→L∗

δ1, ((δ1 → δ2)• (δ2 → δ3)) � δ3
•L

δ1• ((δ1 → δ2)• (δ2 → δ3)) � δ3
•L

whose cut formula is δ ≡ α • ((α→ (α • β)) • ((α • β) → ((α • β) • γ))).
Notice also that there is no cut-free derivation of the associativity laws in a

system obtained by adding →L∗ and ←L∗ to NL. This can be solved exactly if
explicitly association structural rules are adopted. In fact, those extra rules rely
on an implicit changing on the structure of a term.

Derivations for the (De)Currying properties can be obtained by considering
a similar technique to change the associativity, for instance, in the left upper
sequent of the following sketch of a derivation that also depends on the cut rule:

π1
(((γ ← β) ← α), (α, β)) � (((γ ← β) ← α)• α)• β

(((γ ← β) ← α), (α• β)) � (((γ ← β) ← α)• α)• β
•L π2

(((γ ← β) ← α)• α)• β � γ

(((γ ← β) ← α), (α• β)) � γ
cut

(γ ← β) ← α � γ ← (α• β)
←R

Consider now the following example presented by Lambek[9].

“(Poor John) works”
np← np np︸ ︷︷ ︸

np

np→ s

︸ ︷︷ ︸
s

Indeed, we cannot evaluate the type of the whole expression to s as above, if we
place the brackets as it is shown below:

“Poor (John works)”
np← np np np→ s︸ ︷︷ ︸

s

On the Selective Lambek Calculus 71

This would demand to assign the type s ← s to the expression “Poor”, which
could suggest that an adjective affects a sentence instead of a noun. However,
a derivation of the sequent (A ← A , (A, A → B)) � B can be obtained
similarly to such a derivation presented above to one case of the (De)Currying
property.

3 Combining Permissions and the Selective Lambek
Calculus

In order to obtain a proper control of how the structure of a term could be
changed, we propose to consider special association structural rules with extra
premises that it will restrict its applications to some desired cases, includ-
ing those related to the Geach, Composition and Restructuring properties but
avoiding the (De)Currying ones according to the motivation problem presented
above. Such a control will be determined by considering a so-called combining
permission, which is a concept motivated by the notion of sequencing arrows used
to obtain a categorical characterization for a non-commutative tensor product[4]
and which it was introduced in a first presentation of the Selective Lambek
Calculus [5]. Intuitively, the inference of a combining permission between to
formulas α and β, denoted by α∇β, justifies the formation of a product formula
α • β in the scope of a derivation.

The sequent system for the Selective Lambek Calculus, here denoted by SL,
consists of a collection of logical rules, two association structural rules and
a collection of rules for introducing combining permissions. In this work, the
presentation of the rules is deeply changed to obtain a cut elimination theorem
for this formulation of the system.

The usage of combining permissions to allow, or do not, a change in the
structure of a term is based on the fact that each occurrence of the operator
“,” must be properly converted to an occurrence of the connective •. Hence,
if one would like to transform the term ((α, β), γ) to a term (α, (β, γ)), for
instance, it must be obtained combining permissions β∇γ and α∇(β • γ), since
this corresponds to transform the formula (α•β)•γ to the formula α• (β •γ). In
fact, this corresponds that the there are combining permissions that support the
formation of the new formula. The notion of combining permission is generalized
in this study to allow that the operator ∇ could be applied to terms, as in Γ1∇Γ2,
more than just to formulas.

Moreover, while having a combining permission between formulas α and
α → β, for instance, is exactly what it is expected, a so-called basic combining
permission relating two atomic formulas (that represent basic types as n,np,
s,...) could not be very reasonable in the linguistic sense, but it will play a tech-
nical role in our approach in such a way that a derivation will be decorated
with the basic combining permissions needed to infer the combining permissions
that will justify the occurrences of the connective •. For this reason a sequent is
structured as

[Δ] Γ � γ,

72 M. da S. Corrêa and E.H. Haeusler

such that:

– The term Γ is called the hypothesis context of the sequent;
– Δ is a set of basic combining permissions and it is called the permission

context. Notation:
� [] denotes the empty set of basic combining permission, and
� [Δ1, Δ2, · · · , Δn] denotes the set Δ1 ∪ Δ2 ∪ · · · ∪ Δn of basic combining

permissions.

The extra premisses of the association rules will consist of so-called auxiliary
sequents. An auxiliary sequent is structured as

Δ ⇒ Γ1∇Γ2 ,

considering that Δ contains the basic combining permissions needed to infer
Γ1∇Γ2. In the case that Δ is the empty set we denote an auxiliary sequent just
as ⇒ Γ1∇Γ2 .

Hence, for instance, one of the association structural rules of SL can be
formulated as follows:

[Δ1] Γ [((Γ1, Γ2), Γ3)] � δ Δ2 ⇒ Γ2 ∇Γ3 Δ3 ⇒ Γ1 ∇ (Γ2, Γ3)

[Δ1, Δ2, Δ3] Γ [(Γ1, (Γ2, Γ3))] � δ
ASS1

For introducing a formula α • β in the right side of a sequent it is also
demanded that a combination permission α∇β must be inferred.

[Δ1] Γ1 � α [Δ2] Γ2 � β Δ3 ⇒ α∇ β

[Δ1, Δ2, Δ3] (Γ1, Γ2) � α • β
• R

One can think about including a fourth premise in such a rule related to the
introduction of a combining permission Γ1∇Γ2 between the hypothesis contexts
Γ1 e Γ2 of its respective upper sequents to turn explicit the correspondence
between the operator “,” and the connective •. However, this is not necessary
since, by means of the Theorem1 presented in the next section, we assure that
if there is a derivation of a sequent, its permission context contains all basic
combining permissions needed to infer the combining permissions related to any
occurrence of the operator “,” in such a derivation. This will be proved even by
considering the rule •L for introducing a formula α•β in the hypothesis context
similar to that one adopted in NL, i.e, without including an extra premise related
to the introduction of a combining permission α∇β.

The cut rule and the rules for introducing the residual implications also
differ from those ones adopted in NL only by the permission contexts that
are incorporated into the sequents. However, the axiom is formulated exactly to
atomics formulas, since every occurrence of connective • on the right side of a
sequent must be justified by the introduction of a combining permission.

Let us consider here rules →L∗ and ←L∗ similar to those ones presented in
the previous section, obtained just by incorporating the permission contexts into
the sequents. To assure that these rules are derived rules in SL, we must obtain
combining permissions related to the new occurrences of the operator “,” in its
respective bottom sequents in order to apply one of the association structural

On the Selective Lambek Calculus 73

[] α � α
ax, if α is an atomic formula

[Δ1] Γ ′ � α [Δ2] Γ [α] � β

[Δ1, Δ2] Γ [Γ ′] � β
cut

[Δ1] Γ1 � α [Δ2] Γ2 � β Δ3 ⇒ α∇β

[Δ1, Δ2, Δ3] (Γ1, Γ2) � α • β
• R [Δ] Γ [(α, β)] � γ

[Δ] Γ [α • β] � γ
• L

[Δ] (α, Γ) � β

[Δ] Γ � α → β
→R [Δ1] Γ1 � α [Δ2] Γ [β] � γ

[Δ1, Δ2] Γ [(Γ1, α → β)] � γ
→L

[Δ] (Γ, α) � β

[Δ] Γ � β ← α
←R [Δ1] Γ1 � α [Δ2] Γ [β] � γ

[Δ1, Δ2] Γ [(β ← α, Γ1)] � γ
←L

[Δ1] Γ [((Γ1, Γ2), Γ3)] � δ Δ2 ⇒ Γ2 ∇Γ3 Δ3 ⇒ Γ1 ∇ (Γ2, Γ3)

[Δ1, Δ2, Δ3] Γ [(Γ1, (Γ2, Γ3))] � δ
ASS1

[Δ1] Γ [(Γ1, (Γ2, Γ3))] � δ Δ2 ⇒ Γ1 ∇Γ2 Δ3 ⇒ (Γ1, Γ2)∇Γ3

[Δ1, Δ2, Δ3] Γ [((Γ1, Γ2), Γ3)] � δ
ASS2

Fig. 2. Collection of logical and structural rules for SL

rules ASS1 or ASS2. In fact, part of the rules for introducing combining
permissions, depicted in Figure 3, can be motivated by trying to fulfill these
requirements. However, such a property will just be stated as the Corollary8
in the next section, since it depends on the Theorem1 as it explained on the
following.

[Δ1] Γ1 � α [Δ2] Γ [(β, Γ2)] � γ
[Δ1, Δ2]Γ [(Γ1, (α→ β, Γ2))] � γ

→L∗ [Δ1] Γ1 � α [Δ2] Γ [(Γ2, β)] � γ
[Δ1, Δ2]Γ [((Γ2, β ← α), Γ1)] � γ

←L∗

For instance, considering the rule →L∗, we would like to have the following
derivation π:

π≡

π1
[Δ1]Γ1 � α

π2
[Δ2] Γ [(β, Γ2)] � γ

[Δ1, Δ2]Γ [((Γ1, α → β), Γ2)] � γ
→L

P1

Δ′
2 ⇒ (α → β)∇Γ2

P2

Δ1 ⇒ Γ1∇ (α → β , Γ2)

[Δ1, Δ2, Δ′
2] Γ [(Γ1, (α → β, Γ2))] � γ

ASS1

such that Δ1 ∪Δ2 ∪Δ′
2 = Δ1 ∪Δ2, since Δ′

2 ⊂ Δ2 as it will be noticed below,
and:

– P1 and P2 are called auxiliary derivations. In general, an auxiliary derivation
consists on applications of the rules for introducing combining permission,
presented in the Figure3, possibly having derivations of sequents as sub-
derivations.

– The rules for introducing combining permissions S4 and S12 are mainly
motivated to be used in an auxiliary derivation as the following one:

P2 ≡
π1

[Δ1] Γ1 � α ⇒ α∇ (α → β , Γ2)
S4

Δ1 ⇒ Γ1∇ (α → β , Γ2)
S12

The existence of a combining permission like α∇ (α→ β , Γ2) or α∇ (α→ β)
introduced by the rules S4 or S2, respectively, are accepted as primitive

74 M. da S. Corrêa and E.H. Haeusler

elements, since they are quite natural in the linguistic sense. These rules,
and similarly the rules S3 and S5, are special kinds of axioms related to the
process of constructing auxiliary derivations.

- The rule S6 captures the idea that what can be combined at right of (α→ β)
is the same that can be combined at right of β, since (α → β) combined
at right of α produces β. Thus, it is meant to be used exactly to obtain an
auxiliary derivation as P1:

P1 ≡
P3

Δ′
2 ⇒ β∇Γ2

Δ′
2 ⇒ (α → β)∇Γ2

S6

In fact, the existence of such an auxiliary derivation P1 depends on the existence
of an auxiliary derivation P3 of Δ′

2 ⇒ β∇Γ2 for some Δ′
2 ⊂ Δ2, what is

a consequence of the Theorem1 related to the derivation π2 of the sequent
[Δ2] Γ [(β, Γ2)] � γ.

A derivation π′ can be obtained by applying the rules ←L, ASS2, S5, S13
and S7, to show that ←L∗ is also a derived rule in SL.

To motivate the remaining rules for introducing combining permissions (S8,
S9, S10, S11 and S1), let us consider the following auxiliary derivations that
introduced the combining permissions (A • B)∇C and A∇(B • C), for atomic
formulas A, B and C.

B∇C ⇒ B∇C
S1

B∇C ⇒ (A, B)∇C
S10

B∇C ⇒ (A • B)∇C
S8

A∇B ⇒ A∇B
S1

A∇B ⇒ A∇(B, C)
S11

A∇B ⇒ A∇(B • C)
S9

The rules S8 and S9 just allow to convert the operator “,” to the connective •,
without any restriction. The rule S10 capture the view that if it does not exist
any occurrence of the residual implications in the term at left, its structure can be
broken (looking upwards) in a such way that the introduction of the considered
combining permission will depend on the introduction of a combining permission
between its right part and the original right term. The rule S11 is dual to S10.

The rule S1, another kind of axiom, is meant to represent that a combining
permission between atomic formulas is considered as an extra information, since
it is stored at the left side of the auxiliary sequent. This is also done to allow that
the basic combining permission that represents an important information about
the possibility of combining two complex terms can be passed till the bottom
auxiliary sequent.

The rules for introducing combining permissions are drawn to allow that
derivations for all of the properties (1) to (10), presented in the previous section,
an be constructed. Butconsidering just the cases in which the considered formulas
could be properly formed, i.e., itmust be possible to obtain combining permissions
related to the occurrences of the connective •.

Notice that, as the expression reveals, an auxiliary derivation is just a special
sub-derivation in the scope of a derivation of a particular sequent, having no
isolated application. On the following, we present some examples to illustrate
the construction of derivations and their auxiliary derivations in SL.

On the Selective Lambek Calculus 75

α∇β ⇒ α∇β
S1, if α and β are atomic formulae.

⇒ α∇ (α → β)
S2 ⇒ (β ← α)∇α

S3

⇒ α∇ ((α → β) , Γ)
S4 ⇒ (Γ , (β ← α))∇α

S5

Δ ⇒ β ∇Γ

Δ ⇒ (α → β)∇Γ
S6

Δ ⇒ Γ ∇β

Δ ⇒ Γ ∇ (β ← α)
S7

Δ ⇒ (α , β)∇Γ

Δ ⇒ (α • β)∇Γ
S8

Δ ⇒ Γ ∇ (α , β)

Δ ⇒ Γ ∇ (α • β)
S9

Δ ⇒ Γ2 ∇Γ

Δ ⇒ (Γ1, Γ2)∇Γ
S10 (∗) Δ ⇒ Γ ∇Γ1

Δ ⇒ Γ ∇ (Γ1, Γ2)
S11 (∗)

[Δ′] Γ ′ � α Δ ⇒ α∇Γ

Δ′, Δ ⇒ Γ ′ ∇Γ
S12, if Γ ′ �≡ α

[Δ′] Γ ′ � α Δ ⇒ Γ ∇α

Δ′, Δ ⇒ Γ ∇Γ ′ S13, if Γ ′ �≡ α

(∗) Both Γ1 and Γ2 cannot contain any occurrence of the connectives ← and →.

Fig. 3. Rules for Introducing Combining Permissions of SL

(i) Restructuring property for atomic formulas:

π′

[] ((A , (A → B) ← C) , C) � B

[] (A , (A → B) ← C) � B ← C
←R

[] (A → B) ← C � A → (B ← C)
→R

such that the sub-derivation π′ can be obtained in the two following ways:
- Applying the rules ASS2 and ←L:

[] C� C

[] A� A [] B� B

[] A, A→ B� B
→L

[] (A , ((A→ B)← C , C))� B
←L ⇒ A∇(A→ B)

S2

⇒ A∇(A→ B)← C
S7 ⇒ (A, (A→ B)← C)∇C

S5

[] ((A , (A→ B)← C) , C)� B
ASS2

- Applying the rule ←L∗:

[] C� C

[] A� A [] B� B

[] A, A→ B� B
→L

[] ((A , (A→ B)← C) , C) � B
←L∗

(ii) [A∇B , B∇C] (A•B)• C � A• (B• C)

π′

[A∇B , B ∇C] (A, (B, C))� A• (B• C) A∇B⇒ A∇B
S1 B ∇C⇒ B∇C

S1

B ∇C⇒ (A, B)∇C
S10

[A∇B , B ∇C] ((A, B), C)� A• (B• C)
ASS2

[A∇B , B ∇C] (A, B)• C� A• (B• C)
•L

[A∇B , B ∇C] (A• B)• C� A• (B• C)
•L

76 M. da S. Corrêa and E.H. Haeusler

such that

π′ ≡ [] A� A

[] B� B [] C� C B ∇C⇒ B ∇C
S1

[B ∇C] (B, C)� B• C
• R

A∇B⇒ A∇B
S1

A∇B⇒ A∇ (B, C)
S11

A∇B⇒ A∇B• C
S9

[A∇B , B ∇C] ((A, B), C)� (A• B)• C
• R

(iii) [] A • ((A→ B)• (B→ C))� (A• (A→ B))• (B→ C) .

π′

[] ((A, γ), δ)� (A• γ)• δ

⇒ B∇(B→ C)
S2

⇒ (A→ B)∇ (B→ C)
S6 ⇒ A∇ ((A→ B) , (B→ C))

S4

[] (A, ((A→ B), (B→ C))) � (A• (A→ B))• (B→ C)
ASS1

[] (A, (A→ B)• (B→ C))� (A• (A→ B))• (B→ C)
•L

[] A• ((A→ B)• (B→ C))� (A• (A→ B))• (B→ C)
•L

such that γ ≡ A→ B and δ ≡ (B → C) and π′ is the following derivation:

[] A� A

[] A� A [] B� B

[] (A, A→ B)� B

[] A→ B� A→ B ⇒ A∇(A→ B)

(A, A→ B)� A• (A→ B)
• R π′′

[] B→ C� B→ C
P

⇒ (A • γ)∇δ

[] ((A, (A→ B)), (B→ C))� (A• (A→ B))• (B→ C)
• R

π′′ ≡
[] B� B [] C� C

[] (B, B→ C)� C

[] B→ C� B→ C
and P ≡

[] A� A [] B� B

[] (A, (A→ B))� B
→ L

[] A• (A→ B)� B
• L ⇒ B∇(B→ C)

S2

⇒ (A• (A→ B))∇ (B→ C)
S12

We argue that the (De)Currying properties cannot be proved in SL, since
some combining permissions that could allow a changing of the associativity of
a term, as it is demanded to those properties, cannot be derived. For instance,
consider the following attempting to obtain a derivation of one of these properties
stated to atomic formulas.

π
[]((((C← B)← A), A), B)� C A∇B ⇒ A∇B

[Δ′] (A, B)� δ Δ⇒ ((C← B)← A)∇δ

Δ′, Δ⇒ ((C← B)← A)∇(A, B)
S13

[A∇B, Δ′, Δ] (((C← B)← A), (A, B))� C
ASS1

[A∇B, Δ′, Δ] (((C← B)← A), (A• B))� C

[A∇B, Δ′, Δ] (C← B)← A� C← (A• B)

However, the special rules just allow to obtain a combining permission between
(β ← α) and Γ if we could obtain a derivation of a sequent [Δ∗]Γ � α, or
for a sequent [Δ∗]Γ � (α2 ← α1), such that we must also obtain a derivation
of [Δ∗∗]α2 � α, for some basic combining permissions Δ∗ and Δ∗∗. Hence, it
is not possible to complete such an attempting of obtaining a derivation, since
Γ ≡ (A,B) and α ≡ A.

Recalling that for any derivation of a sequent there must be a cut-free
derivation of the considered sequent, as it will be assured by the Theorem 9,
we conjecture that it is not possible to obtain a derivation of the considered
property. Similarly, it would be not possible to obtain in SL a derivation of the
sequent related to the motivation example presented in the section 2:

On the Selective Lambek Calculus 77

[Δ] (A← A) • (A • (A→ B)) � B

for any set of basic combining permissions Δ, since one cannot introduce a
combining permission (A← A)∇(A, (A→ B)). Neither a derivation of a sequent

[Δ] (A← A) • (A • (A→ B)) � (A← A) • (A • (A→ B)) .

Hence, the derivability notion of SL is not reflexive, which also points out the
selective character intended in our approach.

4 Properties

In this section, we present the concepts and results needed to assure that any
occurrence of the operator “,” and the connective • in a derivation are justified
by a combining permission and we also present a cut elimination theorem for SL.

A derivation is cut-free if it does not contain any application of the cut
rule. Hence, an auxiliary derivation P is said to be cut-free if P contains only
cut-free derivations of the sequents that occur as premisses of applications of the
rules S12 and S13.

We consider that a hypothesis context of a derivable sequent is justified by
the set Δ of those basic combining permissions needed to obtain an auxiliary
derivation of a combining permission related to each occurrence of the operator
“,” , in such a hypothesis context. In the particular case in which a hypothesis
context consists of a single formula, we should just consider that Δ is the empty
set. We shall say that a hypothesis context is cut-free justified by a set of basic
combining permissions if there are cut-free auxiliary derivations that introduce
the required combined permission. These concepts are recursively defined in the
following:

Definition 0: Let α be a formula, let Γ , Γ1 and Γ2 be hypothesis contexts and
Δ a permission context.

Γ is (cut-free) justified by Δ iff:

– Γ ≡ α and Δ ≡ ∅; or
– Γ ≡ (Γ1, Γ2) and there exist permission contexts Δ1, Δ2 and Δ3, such that

• Δ ≡ Δ1 ∪Δ2 ∪Δ3 ,
• Γ1 is (cut-free) justified by Δ1,
• Γ2 is (cut-free) justified by Δ2 and
• there exists a (cut-free) auxiliary derivation of the auxiliary sequent
Δ3 ⇒ Γ1 ∇Γ2.

Some rules for introducing connectives, as •R, ←L, and →L and even the
cut rule generate new occurrences of the “,” operator in the left context of their
bottom sequents without verifying if there exists a combining permission related
to such occurrences. We show on the sequel that this is actually unnecessary,

78 M. da S. Corrêa and E.H. Haeusler

by proving that the hypothesis context of any derivable sequent is justified by a
subset of its respective permission context.

Theorem 1: Let Γ be a hypothesis context, Δ a permission context and γ a
formula.

If there is a cut-free derivation of the sequent [Δ]Γ � γ, then:

i) Γ is cut-free justified by a set of basic combining permissions Δ′ ⊂ Δ, and
ii) there is a cut-free auxiliary derivation of an auxiliary sequent Δ′′ ⇒ α1 ∇α2,

for some Δ′′ ⊂ Δ, for any subformula α1 • α2 of γ and of any formula
occurrence of Γ .

A proof of the Theorem1 is done by induction on the number of inferences of
a derivation, applying the Lemma4, the Corollary5 and the Lemma6 on the fol-
lowing. Special attention must be paid to the cases in which the bottom sequent
of a derivation is obtained by an application of •L, ←L, →L, ASS1 and ASS2,
since new occurrences of the operator “,” are generated in the left context of a
sequent. We consider on the following the case in which the rule •R is applied.

π ≡
π1

[Δ1] Γ1 � α
π2

[Δ2] Γ2 � β
P

Δ3 ⇒ α∇ β

[Δ1, Δ2, Δ3] (Γ1, Γ2) � α • β
• R

By induction hypothesis, we have that the context Γ1 is cut-free justified by
some subset Δ′′

1 of Δ1, since there is a cut-free derivation π1 of [Δ1]. Considering
also that the context (α , β) is cut-free justified by Δ3, the Lemma6 ensures that
the context (Γ1 , β) is cut-free justified by Δ′′

1 ∪Δ3.
By induction hypothesis, the context Γ2 is cut-free justified by some subset

Δ′′
2 of Δ2, considering the cut-free derivation π2 of [Δ2] Γ2 � β. Therefore, by

Lemma6, the context (Γ1 , Γ2) is cut-free justified by Δ′′
1 ∪Δ′′

2 ∪Δ3, which is a
subset of Δ1 ∪Δ2 ∪Δ3.

Notice that there is no new formula occurrences in the hypothesis context
Γ1, Γ2 in comparison with the hypothesis contexts of the upper sequents of •R.
Hence, by induction hypothesis, we assure the second property holds for the
hypothesis context of the bottom sequent of π.

To prove the cases in which the association structural rules are applied , we
must also consider an operator Φ, which generates a formula from a hypothesis
context by replacing occurrences of “,” with the connective •, similar to the
operator ()◦ adopted by Moortgat in [14].

Definition 2: Let α be a formula and let Γ , Γ1 and Γ2 be non-empty hypothesis
contexts Φ is a mapping from the collection of hypothesis contexts into the
collection of formulae, such that:

– if Γ ≡ α, then, Φ(Γ) = α;
– if Γ ≡ (Γ1, Γ2), then, Φ(Γ) = Φ(Γ1) • Φ(Γ2).

Lemma 3: Let Δ be a permission context and Γ1 and Γ2 hypothesis contexts.If
there is a (cut-free) auxiliary derivation of the auxiliary sequent

On the Selective Lambek Calculus 79

Δ ⇒ Γ1 ∇Γ2 ,

then there are (cut-free) auxiliary derivations of the following auxiliary sequents

Δ ⇒ Γ1 ∇ Φ(Γ2) and Δ ⇒ Φ(Γ1)∇Γ2 .

We can prove the Lemma 3 by a simple induction on the number of inferences
of an (arbitrary) auxiliary derivation. In the induction step, the desired (cut-
free) auxiliary derivations are obtained from an assumed (cut-free) auxiliary
derivation of the auxiliary sequent mentioned in the antecedent by applying
the rules S8 and S9, respectively. Notice that, in the cases in which the rules
S12 or S13 are applied, we could obtain a (cut-free) derivation of a sequent
[Δ′] Φ(Γ ′) � α from a given (cut-free) derivation of [Δ′] Γ ′ � α by successive
applications of the rule •L.

Lemma 4: Let Γ be a hypothesis context, Δ∗ be a set of basic combining
permissions and γ a formula. For any (cut-free) derivation π of a sequent

[Δ∗] Γ � γ,

if Γ is (cut-free) justified by a set of basic combining permissions Δ ⊂ Δ∗, and
there is a (cut-free) auxiliary derivation of an auxiliary sequent Δ∗∗ ⇒ α1 ∇α2,
for some Δ∗∗ ⊂ Δ∗, for any subformula α1 • α2 of any formula occurrence in Γ ,
then:

(i) there is a (cut-free) derivation π′ of a sequent [Δ′] γ � γ, for some Δ′ ⊂ Δ;
(ii) there is a (cut-free) derivation π′′ of the sequent [Δ′′] δ � δ, for some Δ′ ⊂ Δ,

for any formula δ which occurs in Γ .

This lemma is proved by induction on the length of a derivation.

Corollary 5: Let Γ be a hypothesis context, Δ∗ be a set of basic combining
permissions and γ a formula. For any (cut-free) derivation π of a sequent [Δ∗] Γ �
γ, if Γ is (cut-free) justified by a set of basic combining permissions Δ ⊂ Δ∗, and
there is a (cut-free) auxiliary derivation of an auxiliary sequent Δ∗∗ ⇒ α1 ∇α2,
for some Δ∗∗ ⊂ Δ∗, for any subformula α1 • α2 of any formula occurrence in Γ ,
then there is a (cut-free) derivation π′ of the sequent [Δ′] Γ ′ � Φ(Γ ′), for some
Δ′ ⊂ Δ, for any subcontext Γ ′ of Γ .

A proof of this result follows from the Lemma4, since each subcontext Γ ′

is (cut-free) justified by a subset Δ′ of Δ and each formula occurrence δ of Γ ′

also occurs in Γ . Then, there is a (cut-free) auxiliary derivation of a combining
permission related to each occurrence of the operator “,” in Γ ′ and there is a
(cut-free) derivation of a sequent [Δ′′] δ � δ for each formula occurrence δ of Γ ′

and Δ′′ ⊂ Δ′. Therefore a (cut-free) derivation of [Δ′] Γ ′ � Φ(Γ ′) is obtained by
successive applications of •R.

Lemma 6: Let Γ be a hypothesis context, Δ∗ be a set of basic combining
permissions and γ a formula. Let π be a (cut-free) derivation of a sequent

80 M. da S. Corrêa and E.H. Haeusler

[Δ∗] Γ � γ, such that Γ is (cut-free) justified by a set of basic combining
permissions Δ ⊂ Δ∗, and there is a (cut-free) auxiliary derivation of an auxiliary
sequent Δ∗∗ ⇒ α1 ∇α2, for some Δ∗∗ ⊂ Δ∗, for any subformula α1 • α2 of any
formula occurrence in Γ .

If there exist hypothesis contexts Γ ′ and Γ ′′ and permission contexts Δ′ and
Δ′′, such that:

– Γ ′ occurs in Γ ,
– Γ ′ is (cut-free) justified by Δ′ ⊂ Δ,
– Γ ′′ is(cut-free) justified by Δ′′, and
– there is a derivation of the sequent [Δ′, Δ′′] Γ ′′ � Φ(Γ ′),

then

(i) the hypothesis context Γ [Γ ′′], which is obtained from Γ by replacing exactly
one occurrence of Γ ′ with Γ ′′, is (cut-free) justified by some Δ′′′ ⊂ Δ ∪Δ′′,
and

(ii) For any subcontext Γ ∗ of Γ , including Γ itself, there is a (cut-free) derivation
of the sequent [Δ′′′] Γ ∗[Γ ′′] � Φ(Γ ∗[Γ ′]) for some Δ′′′ ⊂ Δ ∪Δ′′.

A proof for this lemma is done by structural induction on a hypothesis context
Γ , applying the Lemma3 and the rules S12 and S13 to obtain the required
combined permissions and the Corollary6 to obtain the sub-derivations necessary
to prove the item (ii).

As a consequence of the Theorem1, we have that the hypothesis context of
any derivable sequent is justified by a subset of the respective permission context.

Corollary 7: Let Γ be a hypothesis context, Δ a permission context and γ a
formula.

If there is a derivation of the sequent [Δ]Γ � γ, then:

i) Γ is justified by a set of basic combining permissions Δ′ ⊂ Δ, and
ii) there is an auxiliary derivation of an auxiliary sequent Δ′′ ⇒ α1 ∇α2, for

some Δ′′ ⊂ Δ, for any subformula α1•α2 of γ and of any formula occurrence
of Γ .

A proof of this can be obtained directly from the proof of the Theorem1 by
just considering (arbitrary) derivations and auxiliary derivations and including
a case in the induction step in which the derivation is obtained by an application
of the cut rule.

As it was pointed out in the previous section, we can now assure that the
rules →L∗ and ←L∗ are derived rules in SL.

Corollary 8: The rules →L∗ and ←L∗ are derived from →L and ←L and the
association structural rules ASS1 and ASS2 in SL.

We have obtained a Gentzen’s style proof of the cut-elimination theorem for
the considered system, in accordance with the presentation of Takeuti[17].

Theorem 9(Cut Elimination:) If there is a derivation of a sequent S, then there
is a cut-free derivation of S.

On the Selective Lambek Calculus 81

The proof of this theorem is a consequence of Lemma10, presented on the
following, and could be done by induction on the number of applications of the
cut rule in a derivation of a sequent.

Lemma 10: If π is a proof of a sequent [Δ] Γ � γ which contains only one
application of the cut rule occurring as its last inference, then there is a cut-free
derivation of such a sequent.

This lemma is proved by on a double induction on a measure of complexity
of a derivation based on the grade of the cut formula and the notion of rank of a
derivation, as presented in [17]. We present on the following the part of the proof
that deals with a case in which the rank of the considered derivation π is greater
than 2, since the right upper sequent of the cut rule is a lower sequent of the
structural associative rule ASS1. Considering the case in which the occurrence
of the cut-formula α belongs to Γ1, we have that the derivation π must be as
follows:

π1
[Δ′] Γ ′ � α

π2
[Δ1, Δ2, Δ3] Γ [(Γ1[α], (Γ2, Γ3))] � γ

[Δ1, Δ2, Δ3, Δ′] Γ [(Γ1[Γ ′], (Γ2, Γ3))] � γ
cut

such that

π2 ≡
π′
2

[Δ1] Γ [((Γ1[α], Γ2), Γ3)] � γ
P1

Δ2 ⇒ Γ2 ∇Γ3

P2
Δ3 ⇒ Γ1[α]∇ (Γ2, Γ3)

[Δ1, Δ2, Δ3] Γ [(Γ1[α], (Γ2, Γ3))] � γ
ASS1

Then, we obtain the following derivation:

π3 ≡
π1

[Δ′] Γ ′ � α
π2

[Δ1] Γ [((Γ1[α], Γ2), Γ3)] � γ

[Δ1, Δ′] Γ [((Γ1[Γ ′], Γ2), Γ3)] � γ
cut

Notice that ν(π3) < ν(π), since rank(π3) < rank(π). Then, by the considered
induction hypothesis, there is a cut-free derivation π4 of the sequent

[Δ1, Δ
′] Γ [((Γ1[Γ ′], Γ2), Γ3)] � γ .

Regarding to the cut-free derivation π′
2, by Theorem1, Γ [((Γ1[α], Γ2), Γ3)] is

cut-free justified by a set of basic combining permission Δ′
1 ⊂ Δ1 and there

is a cut-free auxiliary derivation of an auxiliary sequent Δ′′
1 ⇒ α1 ∇α2, for

some Δ′′
1 ⊂ Δ1, for any subformula α1 • α2 of any formula occurrence in

Γ [((Γ1[α], Γ2), Γ3)].
Then, the sub-context Γ1 is cut-free justified by some Δ′′′

1 ⊂ Δ′
1.

Considering the cut-free derivation π1, the Theorem1 ensures that Γ ′ is cut-
free justified by the some Δ′′ ⊂ Δ′.

Then, by Lemma6, there is a cut-free derivation π5 of [Δ′′′] Γ1[Γ ′] � Φ(Γ1[α])
for some Δ′′′ ⊂ Δ′

1 ∪Δ′′.
By Lemma3 and regarding that P2 is a cut-free auxiliary derivation of the

auxiliary sequent Δ3 ⇒ Γ1[α]∇ (Γ2, Γ3), there is a cut-free auxiliary derivation
P3 of Δ3 ⇒ Φ(Γ1[α])∇ (Γ2, Γ3) .

82 M. da S. Corrêa and E.H. Haeusler

Then, we obtain the following cut-free auxiliary derivation:

P4 ≡
π5

[Δ′′′] Γ1[Γ
′] � Φ(Γ1[α])

P3
Δ3 ⇒ Φ(Γ1[α])∇ (Γ2, Γ3)

Δ3 ⇒ Γ1[Γ ′]∇ (Γ2, Γ3)
S12

Hence, we obtain the following cut-free derivation:

π4
[Δ1, Δ′] Γ [((Γ1[Γ

′], Γ2), Γ3)] � γ
P1

Δ2 ⇒ Γ2 ∇Γ3

P4
Δ3 ⇒ Γ1[Γ

′]∇ (Γ2, Γ3)

[Δ1, Δ2, Δ3, Δ′] Γ [(Γ1[Γ ′], (Γ2, Γ3))] � γ
ASS1

5 Conclusion and Future Works

We have presented a framework in which intermediate systems between the
non-associative and the associative Lambek Calculus can be formulated, making
possible to consider questions about the non-associativity of the operator • (and
the operation of combining expression represented by it) in a more sensible way.
Instead of consider unary modalities, as in [14], to recover the capability to
change the association in a term, we adopted a notion of combining permission
and performed a kind of contextual analysis to deal with such a problem.

However, the rules for introducing combining permissions S12 and S13 cause
some troubles with regard to the decidability of the system, since they call on a
formula that could not occur in the considered bottom auxiliary sequent. As a
further work, we wonder about restricting these rules by imposing that the new
formula α would have at most the same atomic formula occurrences as the hy-
pothesis context Γ ′ of the left upper sequent and also that α would have a lesser
complexity than Φ(Γ ′). Other future work consists on investigating what class
of language could be described by the system SL, verifying if this approach of
adopting combining permissions actually make it possible to generate a grammar
that could recognize some class or sub-class of the context-sensitive languages,
instead of context-free languages as NL and L [11, 12, 16].

Acknowledgments. We are grateful to Prof. P. Schroeder-Heister, Michael
Arndt and Ernst Zimmermann for their helpful comments and suggestions. We
also would like to thank the anonymous referees for their fair criticisms.

References

1. Abrusci,V.M.: A Comparison between Lambek Syntactic Calculus and Intuitionistic
Linear Propositional Logic. Zeitschr. f. Math. Logik und Grundlagen d. Math. 36
(1990)11-15.

2. Benthem, J. van. The semantics of variety in categorial gramar. Report 83-29,
Simon Fraser University, Burnaby (B.C) Canada (1983). (Revised version in [3]).

3. Buszkowski,W., Marciszewski, W and Benthen, J. van (eds): Categorial Grammar.
John Benjamins. Amsterdan (1988).

4. Corrêa, M. Da S. & Haeusler, E. H.: A concrete categorical model for the Lambek
Calculus. Mathematical Logic Quarterly (Formerly Zeitschr. f. Math. Logik und
Grundlagen d. Math.) 43 (1997) 49-59.

On the Selective Lambek Calculus 83

5. Corrêa, M. Da S. & Haeusler, E. H.: Selective Lambek Syntactic Calculus.
Proceedings of the 5th Workshop on Logic, Language, Information and
Computation. São Paulo, July (1998) 39-46. Abstract appeared in the Conference
Report published in Vol 6, N. 6 (Nov. 1998) of the Logic Journal of the IGPL.

6. Došen, K.: Sequent systems and groupoid models. Studia Logica 47, 353-385, 1988,
Studia Logica 48 (1989) 41-65.

7. Dunn. J.M, Meyer, R. K.: Combinators and structurally free logic. Logic Journal
of the IGPL Vol. 5 No. 4 (1997) 505-537.

8. Heple, M. A general framework for hybrid substructural categorial logics.Ms.IRCS
Penn, Available as IRCS Report 94-14.

9. Lambek,J.: The Mathematics of Sentence Structure. American Math. Monthly 65
(1958) 154-169.

10. Lambek,J.: On the calculus of syntactic types. In: Structure of Language and its
Mathematical Aspects. Proceedings of 12th Symp. Appl.Math., American Math.
Soc., Providence,R.I. (1961) 166-178.

11. Kandulski, M.: The equivalence of nonassociative Lambek Categorial Grammars
and context-free grammars. Zeitschrift fr Mathematische Logik und Grundlagen
der Mathematik 34 (1988) 41-52.

12. Kandulski, M.: On commutative and nonassociative syntactic calculi and categorial
grammars. Mathematical Logic Quarterly 65 (1995) 217-235.

13. Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language and
Information 5 (1996) 349-385.

14. Moortgat, M.: Categorial Type Logics. In: J. van Benthem and A. ter Meulen
(eds.), Handbook of Logic and Language. North Holland Elsevier. Amsterdan (1997)
chapter 2.

15. Morrill, G.: Type Logical Grammar. Categorial Logic of Signs. Kuwer, Dordrecht
(1994).

16. Pentus, M.: Lambek grammars are context-free. In Proocedings of 8th Annual IEEE
Symposium on Logic in Computer Science, New York:IEEE (1993).

17. Takeuti, G.: Proof Theory. North Holland. Amsterdan (1975).

Grammatical Development with Xmg

Benoit Crabb

Loria, B.P.239, F-54506 Vandoeuvre-ls-Nancy, France
crabbe@loria.fr

Abstract. This paper is dedicated to the compact representation of
Tree Adjoining Grammars. We provide a methodology for grammati-
cal development with eXtensible MetaGrammar (Xmg). The provided
methodology has been set up together with the development of a large
French Tag. Furthermore the grammatical representation language and
the assorted development methodology presented can be reused for gram-
matical development with other strongly lexicalised syntactic formalisms.

Xmg is an interpreter for a grammatical representation language designed in
the spirit of Patr II. It has been specifically designed to ease the practi-
cal development of strongly lexicalised grammars. A first presentation of the
language is given by [1] and a description of the assorted interpreter is given
by [2].

Here, we are concerned with providing a grammatical development method-
ology for Tree Adjoining Grammars (Tag [3]) using Xmg. This methodology
has been applied to the actual development of an open source French Tag. We
begin by motivating the language used: section 1 recalls the motivation of lexi-
calised syntactic formalisms and section 2 indicates the kind of generalisations
we want to capture in grammatical descriptions. Section 3 introduces the actual
language used for grammatical description. Section 4 provides a methodology
for large grammatical development with that language. Finally Section 5 draws
a short comparison with related proposals.

1 Motivation: Generalisations in the Lexicon

Tag is used in its lexicalised version (Ltag) for the representation of natural
languages. In a lexicalised Tag, each grammatical unit is an elementary tree
anchored by at least one word, the anchor. An anchor is a leaf node of an
elementary tree.

Though strong lexicalism has well known advantages: on linguistic grounds,
it allows to account for lexical exceptions or multiword expressions; on compu-
tational grounds it allow to select the only subset of the grammar required to
parse a given sentence, thus improving parsing efficiency.

However in practice significant problems come from the lack of generalisations
in grammatical representation. This lack of generalisation entails difficulties for

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 84–100, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Grammatical Development with Xmg 85

(a)

S

N↓ V

mange

N↓

Jean mange une pomme
John eats an apple

(b)

S

N↓ V

mangent

N↓

Les enfants mangent des biscuits
The children eat cookies

(c)

S

N↓ V’

V↓ V

mangs

PP

P

par

N↓

Les biscuits sont mangs par les enfants
The cookies are eaten by the children

(d)

S

N↓ V’

Cl↓ V

mangs
Les enfants les ont mangs
The children have eaten them

(e)

S

PP

P

par

N↓
S

N↓ V’

V↓ V

mangs
Par quels enfants les biscuits sont-ils mangs ?
By which children the cookies have been eaten ?

Fig. 1. Some alternative entries for transitive manger (to eat)

grammatical development and grammatical maintenance. Any substantial mod-
ification in a large sized grammar such as the representation of subject-verb
agreement requires to modify an important number of independently described
units.

Strictly speaking, in a lexicalised context, the lexicon for a tree adjoining
grammar is an enumeration of independently described trees. In Figure 1 we
illustrate this by providing some sample entries for the transitive French verb
manger (to eat). Each sample tree is glossed with a sample sentence illustrat-
ing the context represented by that tree1. These trees represent some sample
alternative contexts in which manger can occur in French. Trees (a, b) illustrate
the need for two (or more) different elementary trees for handling morphologi-
cal alternatives, (c) illustrates a diathesis alternate realisation (passive) of the
predicate and finally (d,e) illustrate alternative realisations of the predicate’s

1 In the grammar we have implemented there are actually 153 trees related to the
transitive verb manger.

86 B. Crabb

arguments : cliticisation of the object (d) and a questioned realisation of the By
Object of the passive variant (e).

In the remaining of the paper we will consider only tree schemata as the
units of interest, as it is usually the case in Tag
implementations (see e.g. [4]). A tree schema is an
elementary tree where the lexical item (the anchor)
is left underspecified (we use the notation to in-
dicate this). Actual elementary trees are generated

S

N↓ V N↓

on the fly by the parser. Such tree schemata are grammatical units among
which we can identify generalisations. Using these generalisations, we shall show
how to take advantage of them to ease the development of a computational
grammar.

2 Two Kinds of Grammatical Generalisations

Methodologically we want to capture two kinds of generalisations : structure
sharing on one hand and alternatives on the second hand.

Structure Sharing. Structure sharing is usually well understood. These gener-
alisations aim at factoring out the common structures. The two following trees
illustrate this:

S

N↓ V N↓

Jean mange une pomme
John eats an apple

N

N* S

N↓ S

N↓ V

La pomme que Jean mange
The apple John eats

Where the encircled subtrees represent the realisation of a subject, which is a
common substructure shared by both units.

Alternatives. Alternatives is a specificity of the lexicon which has been some-
times ignored or left unclear in recent Tag literature [5, 6]. The active/passive
alternative is an instance of such generalisations. Historically, the expression of
such alternatives in the lexicon is initially due to [7] who argues in favor of the
expression of a counterpart to some transformations of the Generative Grammar
in the lexicon. In a language of grammatical representation we have to capture
the fact that the two following trees are active/passive alternatives of a same
predicate argument structure without focusing whether these trees actually share
some common substructure.

Grammatical Development with Xmg 87

S

N↓ V’

V↓ V

PP

P

par

N↓

by passive tree

S

N↓ V N↓

active tree

The two methodological requirements we put forward are reflected in lexical
rule based systems. [8] has in some respects ported the proposal of [9] to Tag.
He uses an inheritance hierarchy to express structure sharing and lexical rules
(called metarules) to express alternatives.

It is worth noting that alternatives have a special status because these gen-
eralisations contribute to describe sets of related grammatical units (such as an
active-passive alternative). For instance an ActiveToPassive lexical rule out-
puts a new passive tree provided a base active tree, which makes a set of two
trees. Alternatives are an important point in grammatical representation: indeed
a tree family in a Tag is a set of trees that represent alternative realisations of
a given predicate argument structure.

3 The Language and Its Intuition

The language of grammatical description presented in this section aims at taking
advantage of the two kinds of generalisations we have identified to ease grammat-
ical development2. Its original motivation is to provide an alternative grammat-
ical representation language to a lexical rule based one. This motivation comes
from the fact that we do not want to use lexical rules in grammatical development
for Tag in order to avoid rule sequencing problems. The sequencing problems
are increased in Tag since the number of lexical rules required is more much
than in a phrase structure grammar lexical description. Indeed, since Tag has no
independent context-free rules, their counterparts are expressed in the lexicon.

The language crucially relies on the notion of class (or template). A class is
a description of partial grammatical structures. With Tag such a description
is a tree description possibly augmented with feature structures3. Using classes
allows giving a name to such a description that can be reused to stand for this
description in any grammatical description. These classes allow us to capture
grammatical generalisations.

The descriptions that can be expressed in a class follow the abstract syntax
given here:

Class ::= Name → Goal

Goal ::= φ | Name | Goal ∨ Goal | Goal ∧ Goal

2 A formal presentation of the language is detailed in [1].
3 We do not detail the use of feature structures in this paper.

88 B. Crabb

Essentially, a class associates a name to a description, called the Goal. The Goal
is one of the following:
– An actual description of a grammatical structure (φ). Using Tag, we as-

sociate a name to a tree description. The following classes exemplify
this:

(1) a. CanonicalSubject →

S

N↓ V

b. RelativisedSubject →

N

N* S

N↓ V

c. VerbForm →

S

V

The tree descriptions are expressed in a common tree description language
detailed by [1]. We use common graphical notations to represent the formu-
lae of the tree description language4. A tree description is interpreted as a
finite first order tree.

– A name of a class otherwise defined. Thus in the following description, the
class ActiveVerbForm reuses the description associated with the class Verb-
Form:
(2) ActiveVerbForm → VerbForm

– A disjunction or choice of descriptions. The following class associates the
name Subject with an alternative: a subject is either (in this example) a
canonical or a relativised subject
(3) Subject → CanonicalSubject ∨ RelativisedSubject

– A conjunction of descriptions. Finally the language allows us to express con-
junctions of descriptions. A conjunction of description is understood as the
conjunction of two tree descriptions where node names of each conjunct are
renamed.
(4) IntransitiveVerb → Subject ∧ ActiveVerbForm

Interpretation of the Language. This grammatical description language is inter-
preted by [1] as a logic program of the Dcg paradigm [10] where the terminals
of the language are tree descriptions and where the conjunction of descriptions

4 Straight lines indicate immediate dominance. Linear precedence is indicated by the
symbol ≺+ and adjacency or immediate precedence is not indicated by any special
symbol. Trees are decorated with node labels. We leave implicit node names who
play no significative role in our discussion.

Grammatical Development with Xmg 89

is a counterpart for concatenation. The language of the Dcg is a tree language,
that of the grammatical units of the grammar. We further require the number
of grammatical units to be a finite set. Therefore the Dcg is restricted to be
non recursive (directly or indirectly). Given an axiom, an interpreter for this
language generates the whole language of the grammar5.

In the context of our current example, given the axiom IntransitiveVerb, an
interpreter outputs the results as depicted in Figure 2. This picture shows on
the left the conjunction of descriptions used to output the models depicted on
the right of the arrow. In other words the interpreter builds a set of trees, each
of them is an alternative realisation of an Intransitive context.

As illustrated in figure 2, conjunction is regarded as a conjunction of tree
descriptions yielding a new description whose class of admissible models is a
class of finite first order trees, the minimal models [1].

S

N↓ V
Le garon. . .
The boy. . .

∧

S

V�
dort
sleeps

⇒

S

N↓ V�
Le garon dort
The boy sleeps

N

N* S

N↓ V
(Le garon) qui. . .
(The boy) who. . .

∧

S

V�

dort
sleeps

⇒

N

N* S

N↓ V�
Le garon qui dort
The boy who sleeps

Fig. 2. Tree Generation for IntransitiveVerb

Inheritance Hierarchies. After [9], work on grammatical organisation often relies
on inheritance hierarchies. Though this notion is not central to our language,
we can easily interpret classes as being organized in inheritance hierarchies. We
illustrate this with the following example

(5) a. ActiveVerbForm → VerbForm ∧φ
b. PassiveVerbForm → VerbForm ∧ψ

where a class C1 whose description uses a class named C2 is interpreted as in-
heriting information from C2

6. Thus both ActiveVerbForm and PassiveVerbForm

5 [2] describes an actual implementation of such an interpreter. The interpretation of
the grammatical description language as a logic program enables them to implement
it following the model of a Prolog interpreter, a Warren Abstract Machine [11].

6 φ and ψ stand for the additional description specified in the inheriting class which
was not necessary to this paper.

90 B. Crabb

are interpreted as inheriting infor-
mation from VerbForm. That may
be graphically represented as de-
picted above. It is worth being no-
ticed that this inheritance notation
should not be confused with Hpsg

VerbForm

ActiveVerbForm PassiveVerbForm

,
type-inheritance relations. The latter are a part of the Hpsg theory where ours
are just a graphical notation allowing to illustrate the organisation of classes and
play much the same role as macros.

Name Spaces. Finally, we have also found it convenient to allow an explicit man-
agement of name spaces. Each class defines its own name space: each identifier
(e.g. a node identifier in a tree description) is local to the class where it is de-
clared. Nonetheless, in the context of inheritance, we have found it convenient
to allow a given class to explicitly import the name space explicitly exported by
its superclass.

4 Overall Methodology

In this section we provide the methodology we used for the development of the
verbal part of a French Tag grammar. This methodology takes most of its inspi-
ration from the three dimensional methodology given by [5, 6]. The description
works by describing fragments of trees. A fragment represents either a real-
isation of an argument of the predicate or a realisation of the predicate itself.
Intuitively the trees are described by combining one or more fragments represent-
ing arguments with a fragment representing the predicate form. This generalises
the preliminary example given in section 3 where the classes CanonicalSubject
and RelativisedSubject describe realisation of an argument and where the class
VerbForm describes the realisation of the predicate itself.

We work with four levels of abstractions: the first aims at defining and organ-
ising classes describing tree fragments (Section 4.1). The second aims at grouping
descriptions into syntactic functions (Section 4.2). The third aims at describing
verbal diathesis alternatives (Section 4.3) while the fourth aims at capturing the
notion of tree family (Section 4.4).

In the rest of this section, we illustrate our methodology by providing some
sample classes that will allow us to generate some representative alternatives
of a ditransitive family. Finally we finish this section by reporting the results
of scaling up the given methodology in the context of development of a large
French grammar.

4.1 Tree Fragments

Methodologically, this level of abstraction is only concerned with capturing struc-
ture sharing. The building blocks of the grammatical description are tree frag-
ments. We mainly associate names to tree descriptions and organize them within

Grammatical Development with Xmg 91

CanonSubj →

S

N↓ V

CanonObj →

S

V N↓

CanonIndObj →

S

V PP

P N↓

CanonByObj →

S

V PP

P

par

N↓

ActiveVerbForm →
S

V�

RelatSubject →

N

N* S

N↓ V

WhObj →

S

N↓ S

V

WhIndirObj →

S

PP

P N↓
S

WhByObj →

S

PP

P

par

N↓
S

PassiveVerbForm →

S

V

V↓ V�

Fig. 3. Elementary tree fragments used as building blocks of the grammar

an inheritance hierarchy. Figure 3 provides sample classes describing tree frag-
ments. These fragments represent different possible constructions of French ver-
bal dependants in a Tag.

To further factorise information we organise the fragments in an inheritance
hierarchy. Figure 4 provides a graphical representation of this hierarchy following
the conventions introduced in section 3. This hierarchy illustrates that verbal
arguments described in Figure 3 break in four categories. First, the canonical
complements are those arguments realised after the verb. The canonical object
is a noun and the prepositional complements are introduced by the prepositions
for the canonical indirect object and par for the canonical by object. Second the
canonical subject is a noun realised in front of the verb. Third, Wh arguments
(or questioned arguments) are realised in front of a sentence headed by a verb
and may possibly be realised at an unbounded distance of the predicate. Wh
object is an extracted noun and questioned prepositional objects are extracted

92 B. Crabb

VerbalArgument

CanonSubj CanonCompl

CanonObj CanPP

CanonIndObj CanonByObj

Wh

WhObj WhPP

WhIndirObj WhByObj

RelatSubject

Fig. 4. Organisation of elementary fragments in an inheritance hierarchy

prepositional phrases that are introduced by a specific preposition. Fourth the
relativised subject represents a relative pronoun realised in front of the sentence.
Extracted subjects in French cannot be realised at an unbounded distance of the
predicate.

Finally, classes in the hierarchy are specified in a way that each class has
access to the identifiers declared by its immediate or non immediate superclasses.

4.2 Syntactic Functions

This second level of abstraction is mainly concerned with capturing alterna-
tives. We want to capture generalisations that are syntactic functions. To do
this, we take advantage of the tree fragments described in the previous section.
We can reuse them by manipulating the name of the classes where they are
defined.

Syntactic functions are understood here as notions that allow us to char-
acterise verbal dependants by abstracting over the problem of word ordering.
Along this line of thought, each syntactic function is a name associated to a set
of alternative realisations in syntax as illustrated by the classes defined below:

(6) a. Subject → CanonicalSubject ∨ RelatSubject
b. Object → CanonicalObject ∨ WhObject
c. ByObject → CanonicalByObject ∨ WhByObject
d. IndirectObject → CanonicalIndirObject ∨ WhIndirObject

We define a subject as an abstraction for talking about a dependant that can be
either realised in front of the verb in a canonical position (represented here by the
class CanonicalSubject) or in front of the verb as a relative pronoun that cannot
be realised at an unbounded distance from the predicate (class RelatSubject).
Thus, the subject class we have provided here allows to characterise contexts
such as these:

(7) a. Jean mange (canonical subject)
John eats

b. Le garon qui mange (relativised subject)
The boy who eats

Grammatical Development with Xmg 93

As a matter of illustration, the indirect object (class IndirectObject) is a function
that abstracts over the realisation of an argument introduced by the preposition
at the right of the verb (CanonicalIndirObject) or realised in extracted position
(possibly realised at an unbounded distance from the predicate) as illustrated
by the following examples:

(8) a. Jean parle Marie (canonical indirect object)
John talks to Mary

b. A qui Jean parle-t-il ? (wh indirect object)
To whom does John talk ?

c. A qui Pierre croit-il que Jean parle ? (wh indirect object)
To whom does Peter think that John talks ?

To sum up, the overall methodology we used for describing syntactic functions
is compatible with the informal classification of French syntactic functions made
by [12]. Each syntactic function is associated to a set of possible syntactic con-
structions. The set or system of syntactic functions for French is then defined in
a way that there are no two syntactic functions associated with the same set of
constructions.

4.3 Diathesis Alternations

In this third level, we take advantage of the abstractions captured so far to
represent diathesis alternations. Again we are interested here in describing al-
ternatives. Diathesis alternations are those alternations of mapping between ar-
guments and syntactic functions, as for instance the active/passive alternation.
In a diathesis alternation the actual form of the verb constrains the way argu-
ments of the predicate are realised in syntax. Thus, in the following example,

(9) a. Jean envoie une lettre
John sends a letter

b. Une lettre est envoye par Jean
A letter is sent by John

It is considered that both (9a) and (9b) are alternative realisations of a pred-
icate argument structure such as send(John, a letter). Diathesis alternations
capture the fact that if the verb is at the active form, then the first pred-
icative argument, John, behaves as a subject and the second predicative ar-
gument,a letter, behaves as an object. If the verb is in the passive form then
the first predicative argument, John, behaves as a by Object (or agentive com-
plement) and the second predicative argument, a letter, behaves as the sub-
ject. We can represent these facts in our language by defining the following
class:

(10) (TransitiveAlternation →
Subject ∧ ActiveVerbForm ∧ Object)
∨(Subject ∧ PassiveVerbForm ∧ ByObject)

94 B. Crabb

Finally let us note that a traditional case of “erasing”, such as the agentless
passive (or passive without agent) can be expressed in our language by adding
an additional alternative where the By Object or agentive complement is not ex-
pressed. Thus (11) is an augmentation of (10) where we have added the agentless
passive alternative (indicated in bold face).

(11) TransitiveAlternation →
(Subject ∧ ActiveVerbForm ∧ Object)
∨(Subject ∧ PassiveVerbForm ∧ ByObject)
∨(Subject ∧ PassiveVerbForm)

This methodology can be further augmented to implement an actual linking
along the lines of [13]. For the so-called erasing cases, one can map the “erased”
predicative argument to an empty realisation in syntax. We refer the reader to
[14] for further details.

4.4 Tree Families

Finally, we can capture tree families. In the Tag literature, a tree family is a set
of trees that represent alternative realisations of a predicate argument structure.
In the line of the example we have developped so far, we can easily describe a
family of trees representing a ditransitive context. More precisely we can define
a family where trees are variant realisations of a predicate argument structure
with a nominal subject, a nominal object and an indirect nominal object as
follows:

(12) DitransitiveFamily → TransitiveDiathesis ∧ Indirectobject

The trees generated for such a family will, among others, handle contexts such
as these:

(13) a. Jean offre des fleurs Marie
John offers flowers to Mary

b. A quelle fille Jean offre-t-il des fleurs ?
To which girl does John offer flowers ?

c. Le garon qui offre des fleurs Marie
The boy who offers flowers to Mary

d. Quelles fleurs le garon offre-t-il Marie ?
Which flowers does the boy offer to Mary ?

e. Les fleurs sont offertes par Jean Marie
The flowers are offered by John to Mary

f. Par quel garon les fleurs sont-elles offertes Marie ?
By which boy the flowers are offered to Mary

All these sentences are seen as alternatives of the prototypical sentence (12).
(12) illustrates an alternative (questioned) realisation of the Indirect Object,
(12) and (12) respectively illustrate the realisation of a relativised subject and of
a questioned object.(12) illustrates that the family handles passive alternatives
thanks to the use of the TransitiveDiathesis class, and finally we show with

Grammatical Development with Xmg 95

(12) that the agentive complement of the passive may be realised as well in a
questioned position.

It is straightforward to extend the grammar by introducing new families. For
instance, one can introduce a transitive family, that is a set of trees that are
alternatives of predicate with a nominal subject and of a nominal object with
the class definition (12) or an intransitive family (alternatives of a predicate with
a nominal subject) with the definition (12).

(14) a. IntransitiveFamily → Subject ∧ ActiveVerbForm
b. TransitiveFamily → TransitiveDiathesis

Grammatical Generation. The last step of our presentation concerns the gener-
ation of an actual grammar with a given grammatical description. Recall that
generating a grammar is understood as the generation of the set of words of the
language of a grammar of the Dcg paradigm, each of these words is a conjunc-
tion of tree descriptions licensed by the grammatical description.

To do this, we have to provide an axiom (or a goal) to the Dcg. In practice
we have found it convenient to allow the user to explicitly define the axioms
he wants to be generated by the interpreter. Following the example developed
so far, the user can ask the interpreter to generate the three families described
before.

(15) a. value IntransitiveFamily
b. value TransitiveFamily
c. value DitransitiveFamily

The interest of this explicit valuation relies on the possibility to generate ei-
ther the total grammar being described by valuating every family or subgram-
mars by valuating only some of the families. These subgrammars can be used
either for testing or checking the correctness of the resulting trees on smaller
sets, or for generating grammars for applications where a large grammar is not
needed.

Constraining the Models Generated. The units manipulated in grammatical de-
scription are tree descriptions. Tree descriptions are expressed in a language
whose formulae are interpreted as finite trees, the minimal models (See [1] for
further details). During grammatical development however we have found con-
venient to let the user further constrain the class of admissible models. This is
achieved by using both properties and principles [1].

User definable properties may be attached to nodes in the tree descriptions.
These properties may then be used as parameters of predefined principles con-
straining the generated models. We illustrate the use of properties and principles
in the context of our running example. Until now according to our methodology,
the families defined in (12) and (12) allow the generation of trees with multi-
ple extractions. Although some rare cases of multiple extractions are known to

96 B. Crabb

S

N↓ V ∧

S

N↓E S

V ∧

S

PP

P N↓E

S

∧
S

V� ⇒ ⊥

Fig. 5. Unicity of extraction

happen in French[15], it is generally preferable to rule them out of grammatical
implementations.

To do this, we introduce a property extracted used as a parameter of a unique-
ness principle. The uniqueness principle requires that in a valid model there may
be at most one node associated to the property specified as parameter. To rule
out double extraction we have associated that property to a node in fragments
representing extraction and instanciated the principle of unicity with the param-
eter extracted.

Figure 5 illustrates this. The ditransitive family allows us to generate the
conjunction of fragments illustrated. From left to right the fragments represent
a canonical subject, a questioned object, a questioned indirect object and an
active verb form. We have indicated the extracted property with the subscript
E. No model can be generated given these descriptions since two different nodes
cannot be associated with the property.

Beyond our working example, in the development of of a larger French gram-
mar we also have used uniqueness for constraining French clitic rank uniqueness,
and for constraining functional uniqueness. Besides uniqueness, we have used a
coloration principle described in [1], a principle of ordering between sibling nodes
in order to achieve French clitic ordering. And finally we have introduced an is-
land principle that accounts for designing elementary trees that are compatible
with the expression of islands constraints in Tag7.

Towards a Realistic French Grammar. It should be clear that the example we
have given up to now is still quite simplified. The language and the method-
ology provided here have been successfully reused to extend the grammatical
description for handling a significative amount of phenomena related to the
syntax of French verbs and valency controlled verbal dependants (Table 1).
Some extensions have been added to handle the syntax of French predicative
adjectives. The actual grammar we have implemented is close to the one de-

7 In Tag, following [15, 4] setting an S node to substitution blocks extraction out of
the constituent dominated by that S node, setting an S node to foot allows the
extraction out of the dominated constituent. The island principle accounts for wh-
islands: if an elementary tree contains both a node marked as extracted and a leaf
node n being sentential, then the node n is marked as substitution, otherwise it is
marked as foot.

Grammatical Development with Xmg 97

Table 1. An overview of the coverage of the grammar (Valency controlled dependants)

Constructions Canonical, Clitic, Interrogative, Relative, Cleft
Syntactic functions Subject, Object, Indirect object, Genitive, Locative, Obliques,

Sentential subject, Sentential objects, Sentential interrogative
Diathesis Active, Passive, Impersonal, Middle, Reflexive
Subcategorisation 44 subcategorisation frames

scribed by [15, 5]. The actual grammar and some documentation for interfacing
it with a lexicon is available in open source by anonymous CVS via the web site
http://sourcesup.cru.fr/XMG. Future work requires to evaluate the grammar
on a reference test suite such as Tsnlp.

5 Some Practical Gains

Though similar to that of [5] and [6], the methodology provided here holds for
a declarative and monotonic language such as the one provided by Xmg. That
is not the case in [5, 6]. The reason for this comes from the fact that we do not
grant a particular status to a canonical or base tree from which other alternative
trees would have been derived8. Instead the methodology provided consists of
describing a whole family of trees being alternatives of each other, all of them
with an equal status. To illustrate this, let us consider the case of the passive
given in (11). Both [5, 6] had to introduce in their languages an erasing device,
allowing to express that an initial subject argument is erased by a short passive
rule. In our context that does not happen since there is no notion of initial nor
final realisation of an argument.

Another difference with [5, 6] is related to the language used. Grammatical
information is only expressed with conjunction and disjunction of tree fragments.
The possibility to use disjunction in the language allows us to conveniently de-
scribe alternatives. As a consequence, it has allowed us to remove from the
metagrammatical formalism a device central to the proposal of [5] namely “cross-
ing”, whose methodological purpose was left unjustified. By comparison with [6],
the use of disjunction allows us to express grammatical knowledge in a single
language of grammatical description. We do not need to split the problem of
grammatical representation in three different modules that are to be interfaced
with each other in a given order9.

8 This idea, central to express alternatives in lexical rule based systems, remains im-
plicit in both [5, 6].

9 In order to account for non-monotonic issues, [6] introduces in her system a central
module of Lexical Redistribution Rules (LRR) that allows to express erasing and that
justifies the tripartition of her system: the first an third modules handle information
in a monotonic context.

98 B. Crabb

In sum, the methodology provided here justifies the use of a monotonic lan-
guage for the compact representation of Tag grammars. It shows that this lan-
guage can be kept simple by using two devices for combining tree fragments: con-
junction and disjunction. The result of this simplification results in a practical
gain that has allowed us to significantly reduce the time needed for grammatical
development.10

6 Conclusion and Perspectives

This paper provides a practical argument showing that a simple language made
of abstractions representing descriptions and the ability to reuse them using
conjunction and disjunction is enough for describing a large sized computational
grammar. Alternatives are handled with disjunction instead of using lexical rules.

Regarding the Tag community, we have shown that the metagrammar [5,
6, 16] may be reduced to a simple grammatical description language by (1) ex-
plicitly introducing the possibility to express alternatives and (2) by providing a
practical argument: that of developing a non trivial grammar with this language.
The use of a different language has nevertheless allowed us to take advantage of
the grammatical development methodology introduced by [5]. Furthermore, we
have found that the language used here for grammatical development is strik-
ingly similar to the one proposed by [17] except that the structures used in the
grammar are different : Lfg grammars use feature structures where Tag gram-
mars use trees. This can ease comparisons between development methodologies
in the two formalisms.

Finally, it can be shown [14] that the language and the grammatical devel-
opment methodology is compatible with the effective expression of a syntax-
semantics interface for Tags along the lines of [18]. This can be done by adding
parameters to the language classes. The effective implementation of a parser
supporting semantics has been achieved by [19].

On formal grounds, further investigations are expected to extend the frame-
work and the methodology to a larger family of syntactic formalisms. Preliminary
investigations have been successfully led by G. Perrier who has reused the lan-
guage and its assorted methodology in the development of a French Interaction
Grammar[20] where the grammatical structures are D-Trees instead of trees. We
are also interested in investigating how to reuse the language and the method-
ology to describe the lexicon of an eXtensible Dependency Grammar [21] where
the elementary grammatical structures used are directed graphs.

On linguistic grounds, further investigations concern the development of
alternative grammatical development strategies. Indeed the methodology pre-
sented here reflects a traditional — generative and syntactocentric — approach
to syntax. An alternative method for implementing the syntax-semantics in-

10 By comparison with the metagrammar compiler described by [16] similar to that of
[5] and for which we had also developed a grammar, we estimate that the develop-
ment time is divided by ten.

Grammatical Development with Xmg 99

terface would be to consider driving grammatical development by using lexical
classes along the lines of [22]. These are thought to carry out a more semantically
fine-grained approach to the syntax-semantics interface problem.

Acknowledgements. We are grateful to Guy Perrier and Jacqueline Lai for
their comments and corrections on earlier drafts of this paper. We thank the three
anonymous reviewers for their detailed comments who have helped to improve
the content of the paper.

References

1. Crabb, B., Duchier, D.: Metagrammar redux. In: Constraint Solving and Language
Processing, Copenhagen (2004)

2. Duchier, D., Leroux, J., Parmentier, Y.: The metagrammar compiler: An nlp
application with a multi-paradigm architecture. In: Mozart 2004, Charleroi (2004)

3. Joshi, A.K., Schabs, Y.: Tree adjoining grammars. In Rozenberg, G., Salomaa, A.,
eds.: Handbook of Formal Languages. Springer Verlag, Berlin (1997)

4. XTAG Research Group: A lexicalized tree adjoining grammar for english. Technical
Report IRCS-01-03, IRCS, University of Pennsylvania (2001)

5. Candito, M.H.: Organisation Modulaire et Paramtrable de Grammaires Electron-
iques Lexicalises. PhD thesis, Universit de Paris 7 (1999)

6. Xia, F.: Automatic Grammar Generation from two Different Perspectives. PhD
thesis, University of Pennsylvania (2001)

7. Bresnan, J., Kaplan, R.M.: The Mental Representation of Grammatical Relations.
The MIT Press, Cambridge MA (1982)

8. Becker, T.: HyTAG: A new Type of Tree Adjoining Grammars for Hybrid Syn-
tactic Representation of Free Word Order Language. PhD thesis, Universitt des
Saarlandes (1993)

9. Flickinger, D.: Lexical Rules in the Hierarchical Lexicon. PhD thesis, Stanford
University (1987)

10. Pereira, F., Warren, D.: Definite clause grammars for language analysis —a survey
of the formalism and a comparison to augmented transition networks. Artificial
Intelligence 13 (1980) 231–278

11. Aı̈t Kaci, H.: Warren’s abstract machine, a tutorial reconstruction. MIT Press
(1991)

12. Iordanskaja, L., Mel’Čuk, I.: Towards establishing an inventory of surface-syntactic
relations : Valency-controled surface-syntactic dependents of the french verb. ((to
appear))

13. Bresnan, J., Zaenen, A.: Deep unaccusitivity in LFG. In Dziwirek, K., Farell, P.,
Mejias-Bikandi, E., eds.: Grammatical Relations : A Cross-Theoretical Perspective.
CSLI, Stanford (1990) 45–57

14. Crabb, B.: Projection et monotonie dans un langage de reprsentation lexico-
grammatical. In: Proc. TALN. (2005) submitted.

15. Abeill, A.: Une grammaire d’arbres adjoints pour le franais. Editions du CNRS,
Paris (2002)

16. Gaiffe, B., Crabb, B., Roussanaly, A.: A new metagrammar compiler. In: Proc.
TAG+6, Venise (2002)

17. Dalrymple, M., Kaplan, R., King, T.H.: Lexical structures as generalizations over
descriptions. In: LFG 04, Christchurch (2004)

100 B. Crabb

18. Gardent, C., Kallmeyer, L.: Semantic construction in feature-based tree adjoining
grammar. In: 10th conference of the European Chapter of the Association for
Computational Linguistics. (2003)

19. Gardent, C., Parmentier, Y.: Large scale semantic construction for tree adjoining
grammar. In: Proceedings of LACL 2005, Bordeaux (2005)

20. Perrier, G.: Les grammaires d’interaction. Habilitation diriger les recherches en
informatique (2003)

21. Debusmann, R., Duchier, D., Koller, A., Kuhlmann, M., Smolka, G., Thater, S.:
A relational syntax-semantics interface based on dependency grammar. In: Pro-
ceedings of the COLING 2004 Conference, Geneva/SUI (2004)

22. Levin, B.: English Verb Classes and Alternations. The University of Chicago Press
(1993)

Lambek-Calculus with General Elimination
Rules and Continuation Semantics

Nissim Francez

Computer Science dept.,
Technion-IIT, Haifa, Israel

francez@cs.technion.ac.il

1 Introduction

In modern approaches to proof-theory (e.g.,[8]) natural-deduction (ND) proof
systems are presented with general elimination-rules (GE-rules) [10], derived
from a more general (re)formulation of Prawitz’s inversion principle [13]. The
setting of such enterprises are usually intuitionistic (and occasionally classic),
but also linear [7] propositional calculi.

The aim of this paper is to investigate the effect of passing to GE-rules in
the (associative) Lambek-calculus [5] L, the heart of Type-Logical Grammar
formalisms [6]. The added dimensions here are the following.

– The non-commutativity (of both the structural comma, and the product,
though we treat here the product-free subcalculus, more relevant to grammar
theory).

– The peripherality requirement on discharge of assumptions, imposed on the
implication-introduction rules in L.

These two issues pose certain questions about how should GE-rules for the di-
rected implications (the two residuals of the non-commutative product) be for-
mulated.

Since we are dealing with a linear subsystem, the Gentzen-style formulation
of ND is used, with sequents manipulating assumptions explicitly. Thus, the
GE-rule for Intuitionistic implication is formulated as follows.

Γ1 � (A → B) Γ2 � A Γ3 � C

Γ1Γ2Γ3 % B � C
(→ GE)

Here ‘Γ % B’ denotes removal of any number (including zero) of instances of B
from Γ . The premisses of the rule are referred to as major premiss, minor premiss
and auxiliary premiss, respectively (viewed from left to right). In presenting
derivations, discharged assumption are put in square barackets and indexed, and
every instances of (→ I) is indexed (uniquely!) with an index of the assumption-
instances it discharges.

However, since we are going to dwell in a linear context, in which neither
vacuous nor multiple discharge of assumption is allowed, we may switch to the
following notation, closer to the one used in L.

2005, LNAI 3492, pp. 101–113, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

102 N. Francez

Γ1 � (A → B) Γ2 � A [B]iΓ3 � C

Γ1Γ2Γ3 � C
(→ GE)i

In an attempt to pass to L with GE-rules, the following two questions immedi-
ately arise, due to the centrality of directionality and peripherality (of assump-
tions):

(1) What should be the peripherality of the discharged assumption B w.r.t
Γ3 in the auxiliary premiss? Such a question does not rise in regular
implication-elimination of L, which do not discharge assumptions. Nor
does it arise in linear logic (either commutative or non-commutative),
which does not impose peripherality on discharged assumptions.

(2) Where should Γ3 be positioned in the conclusion, w.r.t Γ1, Γ2 (where the
relative position of the assumptions of the major and minor premiss are
dictated by the direction of the implication)?

The aim, of course, is to remain conservative and not add derivable sequents
that are underivable in L. We will observe that for the non-commutative L,
expressing ND-rules using sequents (with explicit manipulation of assumptions),
is even more essential than for (merely) linear logic.

Another major aspect of general elimination rules for L is the corresponding
Curry-Howard (CH) terms, that drive the meaning derivations in L-based gram-
mars. Such terms, in an extension of the λ-calculus called ΛJ , were proposed in
[4]. It uses terms of the form M(N, z.P), referred to there as generalized appli-
cation terms. Below is the (→GE) rule with the accompanying term assignment.

Γ1 � (A → B) : M Γ2 � A : N [B]i : z Γ3 � C : P

Γ1Γ2Γ3 � C : M(N, z.P)
(→ GE)i

While having their own contractions, these terms can be directly embedded back
into the λ-calculus by setting M(N, z.P) =df. P [z := M(N)], where ‘:=’ denotes
substitution (in terms). This embedding is carried here to L to express meanings.
Both terms are used synonymously.

We use this CH-image of general elimination-rules to obtain an interesting ef-
fect within L-based grammars’ syntax-semantics interface. We get a
continuation-semantics [1, 2] similar to the types of meanings in a CPS-style[11].
The general elimination-rules, so to speak, form a “syntactic continuation”, in-
ducing the corresponding semantic continuation without any further stipula-
tion, just by the CH-correspondence. Continuation semantics, originating from
semantics of programming languages, was proposed as an independently moti-
vated semantics, having several advantages in its explanatory power of various
natural language constructs, such as: quantifier scope alternations, focus, coor-
dination,misplaced modification and crossover. My point here is not to argue
in favor of continuation semantics, but to point out that it falls out of the use
of GE-rules in L, as the CH-counterpart, and need not be “invented”. This is
exemplified by deriving quantifier scope alternations, as described in Section 3.

Lambek-Calculus with GE-Rules and Continuation Semantics 103

2 General Elimination Rules for L

2.1 Inversion Principles

Since we are using here the “Gentzen style” notation for ND, that emphasizes
an explicit treatment of assumption manipulation, we reformulate Prawitz’s [13]
inversion principle to relate explicitly to the assumptions used in the deriva-
tions counting as “sufficient ground” for introduction. This will give a handle of
the incorporation of order of assumptions in the non-commutative setting. The
boldface parts are my addition, for explicitness. To keep the notation simple,
assume elimination-rules have a major premiss (depending on open assumptions
Γ2), and one minor premiss (depending on open assumptions Γ1).

Let ρ be an application of an elimination-rule with consequence ψ from
open assumptions Γ = Γ1∪Γ2. Then, the derivation justifying the
introduction of the major premiss φ of ρ from open assumptions
Γ1, together with the derivations of minor premisses of ρ from open
assumptions Γ1, “contain” already a derivation of ψ from the same
Γ , without the use of ρ.

Together with some sharpening of the principle in [14], the effect of the prin-
ciple can be renderd via the following requirements [9] that the proof-system
should satisfy (skipping the requirements about the use of open assumptions,
for brevity).

Local Soundness: Introducing a connective followed by its immediate elimina-
tion should reduce to a derivation without such a ”detour”.

Such a reduction is known as conversion. Failing local soundness means the
elimination-rule is too strong, allowing to conclude more than “known” due to
the defining introduction.

Local Completeness: An elimination-rule retains enough information to re-
construct the eliminated connective by an introduction-rule.

The transformation is known as expansion. Failing local completeness means
the elimination-rule is too weak, not allowing to conclude everything “known”
by the defining introduction.

The inversion-principle justifies the “standard” elimination-rules in various
propositional calculi. The stronger inversion-principle, that leads to the general
elimination-rule, replaces reconstructing a derivation of the ‘direct grounds’ jus-
tifying an introduction, by a reconstruction of arbitrary consequences of those
‘direct grounds’. Its formulation (leaving assumptions implicit) is

Whatever follows from the direct grounds for deriving proposition must
follow from that proposition [8] (p.6).

The following lemmawill turn tohave a useful counterpart in thenon-commutative
L when used for grammars.

104 N. Francez

Lemma (derived rules): Let, for any n ≥ 1,

Γ1 � A1 : M1 ... Γn � An : Mn

Γ1...Γn � A : M
(R)

be a derived rule (in a calculus with regular elimination-rules). Then, its general-
ization (GR)i is a sound derived rule in the corresponding calculus with general
elimination rules, discharging the assumption in the additional auxiliary premiss.

Γ1 � A1 : M1 ... Γn � An : Mn [A]i : u Γn+1 � C : P

Γ1...ΓnΓn+1 � C : P [u := M]
(GRi)

Proof: The derivation is shown below (up to a β-reduction).

Γ1 � A1 : M1 ... Γn � An : Mn

Γ1...Γn � A : M
(R)

[A]i : u Γn+1 � C : P

Γn+1 � (A→C) : λu.P
(→I)i

Γ1...ΓnΓn+1 � C : P [u := M]
(→ E)

2.2 The Lambek Calculus and Its Elimination-Rules

Since we are interested primarily in L-based grammars, we interpret the propo-
sitional formulae as syntactic categories, formed by the closure under directed
implications, ‘→, ←’, of a finite set of B of primitive categories. Categories are
ranged over by c, ci, and primitive categories by b, bi. Sequences of categories
are ranged over by Γ, Γi. We use ‘�’ for the sequent-separator. Our point of de-
parture is the standard ND presentation of L (with “regular” elimination rules),
presented in Figure 1. The proof-terms will be discussed later, when semantics
is considered. The two notable chracteristics of L are:

1. In the elimination-rules, the assumptions of the major and minor premisses
are ordered in the conclusion, were the order is induced by the direction of
the implication.

2. In the introduction-rules, the discharged assumtion is peripheraly-located in
the open assumptions of the premiss, and the peripherality (leftmost or right-
most) determines the direction of the introduced implication in the conclu-
sion.

(ax) c : x � c : x

Γ1 � c1 : N Γ2 � (c1 → c2) : M

Γ1Γ2 � c2 : M(N)
(→ E)

Γ2 � (c2 ← c1) : M Γ1 � c1 : N

Γ2Γ1 � c2 : M(N)
(← E)

[c1]i : x Γ � c2 : M

Γ � (c1 → c2) : λx.M
(→ Ii)

Γ [c1]i : x � c2 : M

Γ � (c2 ← c1) : λx.M
(← Ii)

, Γ not empty

Fig. 1. The L-calculus with regular elimination rules

Lambek-Calculus with GE-Rules and Continuation Semantics 105

Thus, the order of the open assumptions is part of the “sufficient grounds” for
deducing a formula. An adequate inversion principle should relate expilicitely to
this order (forming the usual difficulties in first-order expression of the require-
ment). We end up with the following formulation of the inversion-principle:

Let ρ be an application of an elimination-rule with consequence ψ from
ordered open assumptions Γ1, Γ2. Then, the derivation justifying the
introduction of the major premiss φ of ρ from open assumptions Γ2,
together with the derivations of minor premisses of ρ from respective
open assumptions Γ1, “contain” already a derivation of ψ from the
same Γi, i = 1, 2, ordered in the same way, without the use of ρ.

The additional requirement, that of preservation of the order of open assump-
tions in the “contained proof”, explains the (regular) elimination-rules in Figure
1. For example, when ‘→’ is introduced in (c1→c2) by (→I), an open assump-
tion c1 was placed left-peripherally to Γ2 in deriving c2. Thus, if the introduced
formula is immediately eliminated with a minor premiss Γ1 � c1, Γ1 has to be
positioned left to Γ2 in the reconstructed derivation (without the “detour”). Had
any other order of Γ1, Γ2 been used in the introduction-rules, local completeness
would not hold. Suppose we consider reversing the order. The expansion (for the
right implication) under the correct ordering

Γ � (c1→c2) =⇒

Γ � (c1→c2) [c1 � c1]i
c1Γ � c2

(→ E)

Γ � (c1→c2)
(→ Ii)

is blocked under the inverse, wrong, ordering

Γ � (c1→c2) [c1 � c1]i
Γc1 � c2

(→ E ?)

???
(→ Ii ?)

(while the left implication might have been introduced, wrongly).
A conclusion of the final formulation of the inversion-principle is, that when

an assumption-discharging rule is involved in a conversion, the open assump-
tions used to derive a conclusion “replacing” the discharged assumption in the
reconstructed derivation are positioned where the discharged assumption was
positioned originally.

This conclusuion underlies the following proof-substitution rule for non-
commutative logic, admissible for L, explaining the order of open-assumptions
in the conclusion of implication-elimination rules.

Γ1 � c1 Γ2c1Γ3 � c2

Γ2Γ1Γ3 � c2
(Sub)

106 N. Francez

While the rule is admissibile for L, in its general form it is not derivable in
L. However, its two peripheral-substitution special cases, with either Γ2 or Γ3

empty, are derivable.

Γ1 � c1 c1Γ3 � c2

Γ1Γ3 � c2
(Subl)

Γ1 � c1 Γ2c1 � c2

Γ2Γ1 � c2
(Subr)

The derivation of (Subl) is

Γ1 � c1

c1Γ3 � c2

Γ3 � (c1→c2)
(→I)

Γ1Γ3 � c2
(→E)

Interestingly, this explanation underlies also the original product-elimination
rule (•E) in (the non-associative) L, which has already the form of a general
elimination-rule (similar to disjunction-elimination for Intuitionistic logic):

Γ2 � c1 • c2 Γ1[c1][c2]Γ3 � c
Γ1Γ2Γ3 � c

(•E)

where Γ2 is placed between Γ1 and Γ3, the original placement of the discharged
assumptions c1c2 in the minor premiss. Note that no peripherality is involved
here.

While passing, we note that a similar explanation applies in [12] to the order-
ing of assumptions in the “orderd compartment” of the context; there, a context
has three compartments: intuitionistic (unrestricted), linear (admitting only the
exchange structural rule), and ordered (like here, admitting no structural rule).

We now turn to general implication-elimination rules. We assume here, in
the spirit of L, that in the auxiliary premiss too, the discharged assumption has
to be peripheral to the sequence of open assumptions of the premiss. This is in-
line with the derivability of the peripheral-substitution rules in L. We focus on
right-implication, as left-implication is symmetric. Apriori, there are four possi-
bilities of a general elimination rule for ‘→’, by considering both possibilities for
the two issues involved: the peripherality of the discharged assumption in the
auxiliary premiss, and the relative placement of the assumptions of the auxiliary
premiss. Note that here it becomes evident the sequent-presentation of ND-rules
is essential in facilitating the explicit expression of peripherality/directionality of

the discharged assumption in the auxiliary premiss. The notation

[c1]
...
c3 is just not

expressive enough, not showing the peripherality of [c1] w.r.t the other open as-
sumptions. In all of the potential general-elimination rules, the relative ordering
of Γ1, Γ2, the premises of the major and minor premisses, is assumed to be the
same as in the regular elimination-rules, otherwise the latter do not become spe-
cial cases of the former. The potential rules, referred to as (→GEj

i), j = 1, .., 4,

Lambek-Calculus with GE-Rules and Continuation Semantics 107

Γ1 � c1 Γ2 � (c1→c2) [c2]iΓ3 � c3

Γ3Γ1Γ2 � c3
(→GE)1i

Γ1 � c1 Γ2 � (c1→c2) [c2]iΓ3 � c3

Γ1Γ2Γ3 � c3
(→GE)2i

Γ1 � c1 Γ2 � (c1→c2) Γ3[c2]i � c3

Γ3Γ1Γ2 � c3
(→GE)3i

Γ1 � c1 Γ2 � (c1→c2) Γ3[c2]i � c3

Γ1Γ2Γ3 � c3
(→GE)4i

Fig. 2. Potential general elimination-rules for right implication

are shown in Figure 2 (omitting the CH-terms). Of those four rules, only two,
(→GE2

i), (→GE3
i) are sound, and derivable using the regular elimination-rules,

as shown in the following derivations. First, assume Γ3 is not empty.

Γ1 � c1 : N Γ2 � (c1→c2) : M

Γ1Γ2 � c2 : M(N)
(→E)

[c2]i : z Γ3 � c3 : P

Γ3 � (c2→c3) : λz.P
(→Ii)

Γ1Γ2Γ3 � c3 : P [z := M(N)]
(→E)

Γ1 � c1 : N Γ2 � (c1→c2) : M

Γ1Γ2 � c2 : M(N)
(→E)

Γ3 [c2]i : z � c3 : P

Γ3 � (c3 ← c2) : λz.P
(← Ii)

Γ3Γ1Γ2 � c3 : P [z := M(N)]
(← E)

The derivations of the other two are blocked due to the mismatch of the pe-
ripheralty of c2 in the auxiliary premiss and the relative position of Γ3 in the
conclusion.

For the case where Γ3 is empty, we must have c2 = c3, the auxiliary premiss is
an axiom and can be eliminated from the rule, obtaining the regular1 elimination-
rules as special cases.

Thus, in continuation to the conclusion of the inversion-principle as stated
above, the emerging generalization seems to be the following:

– The peripherality of the discharged assumption relative to the open assump-
tions in the auxiliary premiss is free: either left or right.

– The position of the open assumptions of the auxiliary premiss in the con-
clusion is determined by the position of the discharged assumption in the
natural way.

The need for two general elimination-rules per directed implication is not
surprising, as there are two possibilities as to the way an arbitrary consequence
can follow from the direct grounds of of introducing a directed implication, not
determined by the direction of the introduced implication.

From now on, we refer to the (correct) general elimination-rules as (→ GEl
i),

(→ GEr
i), (← GEl

i), (← GEr
i), with i the index of the assumption discharged

1 In this case, the directionality/peripherality of c1 w.r.t the empty Γ3 is immaterial.

108 N. Francez

Γ1 � c1 : N Γ2 � (c1→c2) : M [c2]i : z Γ3 � c3 : P

Γ1Γ2Γ3 � c3 : M(N, z.P)
(→GEl

i)

Γ1 � c1 : N Γ2 � (c1→c2) : M Γ3 [c2]i : z � c3 : P

Γ3Γ1Γ2 � c3 : M(N, z.P)
(→GEr

i)

Γ1 � c1 : N Γ2 � (c2 ← c1) : M [c2]i : z Γ3 � c3 : P

Γ2Γ1Γ3 � c3 : M(N, z.P)
(← GEl

i)

Γ1 � c1 : N Γ2 � (c2 ← c1) : M Γ3 [c2]i : z � c3 : P

Γ3Γ2Γ1 � c3 : M(N, z.P)
(← GEr

i)

Fig. 3. The (revised) associative Lambek-calculus with general elimination-rules

by the rule. For empty Γ , the directional superscript (l or r) is immaterial and
ommitted in derivations. The revised L is presented in Figure 3. The axioms
and introduction-rules remain intact and are suppressed in the figure. Next, we
present the non-commutative counterpart of the derived-rules lemma.

Lemma (non-commutative derived rules): Let, for any n ≥ 1 and i1, ..., in
a permutation of 1, ..., n,

Γ1 � c1 : M1 ... Γn � cn : Mn

Γi1 ...Γin
� c : M

(R)

be a derived rule in L. Then, for Γn+1not empty, its generalizations (GRl)i, (GRr)i

are sound derived rules in L with general elimination rules, discharging the as-
sumption in the additional auxiliary premiss.

Γ1 � c1 : M1 ... Γn � cn : Mn [c]i : u Γn+1 � c∗ : P

Γi1 ...Γin
Γn+1 � c∗ : P [u := M]

(GRl)i

Γ1 � c1 : M1 ... Γn � cn : Mn Γn+1 [c]i : u � c∗ : P

Γn+1Γi1 ...Γin
� c∗ : P [u := M]

(GRr)i

The proof is analogous to the commutative case, using the introduction of the
corresponding directed implications. Note that the relative order of Γi1 ...Γin

remains fixed, and the relative order of Γn+1 w.r.t the whole permutation is
determined by the peripherality of the assumption in the auxiliary premiss, just
as in the general implication-elimination rules themselves.

As an example, consider the harmonious composition rules, which are derived
in L (and are primitive rules in CCG [15]).

Γ1 � (c3 ← c2) : F2 Γ2 � (c2 ← c1) : F1

Γ1Γ2 � (c3 ← c1) : λz.F2(F1(z))
(FC)

,

Lambek-Calculus with GE-Rules and Continuation Semantics 109

Γ1 � (c1 → c2) : F2 Γ2 � (c2 → c3) : F1

Γ1Γ2 � (c1 → c3) : λz.F2(F1(z))
(BC)

For (FC) we get the following (harmonious) generalized composition rules (and
the symmetric ones for (BC)).

Γ1 � (c3 ← c2) : F2 Γ2 � (c2 ← c1) : F1 [(c3 ← c1)]i : F Γ3 � c : M

Γ1Γ2Γ3 � c : M [F := λz.F2(F1(z))]
(GFCl)i

Γ1 � (c3 ← c2) : F2 Γ2 � (c2 ← c1) : F1 Γ3 [(c3 ← c1)]i : F � c : M

Γ3Γ1Γ2 � c : M [F := λz.F2(F1(z))]
(GFCr)i

3 The Effect of General Elimination-Rules on L-Based
Grammars

First, recall that an L-based grammar is a tuple G = 〈Σ, B, c0, α〉, where:

– Σ is a (finite) set of terminals.
– B is a (finite) set of basic categories (inducing the set C of categories).
– c0 is the initial category; w.l.o.g, c0∈B.
– α : Σ −→ 2C is a lexicon, assigning each σ∈Σ a finite set of categories

α[[σ]] ⊆ C. The mapping α is naturally lifted to α : Σ+ −→ (2C)+.

The language defined by G is given by

L[[G]] = {w∈Σ+ | ∃Γ∈α[[w]] : �L Γ � c0}.

The first observation is that, since introducing general elimination-rules has no
effect on the set of provable sequents, L[[G]] does not change. When considering
the derivation-trees as the syntactic descriptions of phrases in the generated lan-
guage, those do change, affecting the strong generative power of the formalism.
However, here we are more interested in the NL-semantics defined by L-based
grammars. The meanings are determined as follows. First, the lexicon is ex-
tended to assign each terminal σ a finite set of pairs, each of the form c : Mσ,
where c is a category and Mσ is a (simply-typed) λ-term, denoting the meaning
of σ (under category c). Then, if w = σ1...σn∈L[[G]], then the CH-image of the
derivation, say M , with free variables x1, ..., xn, is a “recipe” for obtaining the
meaning of w, by substituting in M Mσ for xi if σi = σ and β-reducing the
outcome.

Here, the revision with general elimination-rules with their CH-immage
generalized-application, has an interesting effect, related to the continuation-
semantics (of natural language) advocated in [1, 2]. To illustrate this effect, con-
sider the following fragment of a lexicon for a subset of English, containing sen-
tences with (transitive and intransitive) verbs, and their nominal complements,
consisting noun-phrases over determiners and nouns, using standard general-
ized quantifiers theory. The typing is based on the primitive types e (element)

110 N. Francez

word category type meaning
some (np ↑← n) ((e, t), ((e, t), t)) λPλQ∃x.P (x)∧Q(x)
every (np ↑← n) ((e, t), ((e, t), t)) λPλQ∀x.P (x) ⇒ Q(x)
girl n (e, t) λx.g(x)
boy n (e, t) λx.b(x)

smiles (np ↑ →s) (((e, t), t), t) λx.s(x)
loves ((np ↑ →s) ← np ↑) (((e, t), t), (((e, t), t), t)) λyλx.l(x, y)

Fig. 4. A fragment of a lexicon

and t (truth-value), and (τ1, τ2) is the functional type with domain type τ1 and
range τ2. The lexicon is presented in Figure 4. Abbreviate the (raised) category
(s ← (np → s)) as np ↑. Let us start with a simple example.

(3) Every girl smiles
Abbreviate λP∀x.g(x) ⇒ P (x) as GQs, and use GQ as a variable of type
((e, t), t) (over generalized quantifiers). Below are the two meaning derivations
for (3), with regular elimination-rules (first) and general elimination-rules (sec-
ond). The end result in both cases is, of course, the same:

GQs(λx.g(x)) ≡ ∀x.g(x) ⇒ s(x)

every

(np ↑← n) :
λPλQ∀x.P (x) ⇒ Q(x)

girl

n : λx.g(x)

np ↑: GQs
(← E)

smiled
(np ↑ →s) :
λGQ.GQ(λx.s(x))

s : GQs(λx.s(x))
(→E)

[np ↑]i : GQ

smiled
(np ↑→ s) :
λGQ.GQ(λx.s(x))

[s]k : u

s :
GQ(λx.s(x))

(→ GEk)
every

(np ↑← n) :
λPλQ∀x.P (x) ⇒ Q(x)

girl

n :
λx.g(x)

s :
GQs(λx.s(x))

(← GEl
i)

In the “regular” derivation, when the determiner-meaning is applied to the noun-
meaning (with a regular elimination rule), it does not “know” how the result
is going to be used. On the other hand, in the second derivation, when the
determiner-meaning is applied with a general-elimination rule, it “knows” that
it is going to be used as a subject in a sentence-meaning determination, so it
passes its value instead of an appropriatly discharged assumption GQ.

What we see is, that we get continuation passing similar to the CPS-style
transformation, as proposed by Barker [1, 2].

Lambek-Calculus with GE-Rules and Continuation Semantics 111

[s
] k

:
u

ev
er

y

(n
p

↑←
n
)

:
λ

P
λ

Q
∀x

.
P

(x
)
⇒

Q
(x

)

gi
rl

n
:

λ
x

.g
(x

)
[n

p
↑]

l
:

G
Q

2

n
p

↑:
G

Q
s

(←
G

E
l
)

[(
n

p
↑

→
s
)]

j
:

V
P

s
:

V
P

(G
Q

s
)

(←
G

E
k
)

lo
ve

s

((
n

p
↑

→
s
)
←

n
p

↑)
:

λ
G

Q
1

λ
G

Q
2

.
G

Q
1
(λ

y
.G

Q
2
(λ

x
.l
(x

,
y
))

)
[n

p
↑]

i
:

G
Q

1

s
:

G
Q

1
(λ

y
.G

Q
s
(λ

x
.l
(x

,
y
))

)

(←
G

E
r j
)

so
m

e

(n
p

↑←
n
)

:
λ

P
λ

Q
∃y

.
P

(y
)∧

Q
(y

)

bo
y

n
:

λ
y

.b
(y

)

s
:

G
Q

o
(λ

y
.G

Q
s
(λ

x
.l
(x

,
y
))

)

(←
G

E
r i
)

[s
] k

:
u

[(
s

←
n

p
↑)

] j
:

V
P

[n
p

↑]
l

:
v

so
m

e

(n
p

↑←
n
)

:
λ

P
λ

Q
∃y

.P
(y

)∧
Q

(y
)

bo
y

n
:

λ
y

.b
(y

)

n
p

↑:
G

Q
s

(←
G

E
l
)

s
:

V
P

(Q
s
)

(←
G

E
k
)

[n
p

↑]
i

:
G

Q
2

lo
ve

s

((
n

p
↑

→
s
)
←

n
p

↑)
:

λ
G

Q
1

λ
G

Q
2

.G
Q

1
(λ

y
.G

Q
2
(λ

x
.l
(x

,
y
))

)

(n
p

↑
→

(s
←

n
p

↑)
)

:
λ

G
Q

2
λ

G
Q

1
.G

Q
2
(λ

x
.G

Q
1
(λ

y
.l
(x

,
y
))

)

(E
x
)

s
:

G
Q

2
(λ

x
.G

Q
o
(λ

y
.l
(x

,
y
))

)

(→
G

E
l j
)

ev
er

y

(n
p

↑←
n
)

:
λ

P
λ

Q
∀x

.P
(x

)
⇒

Q
(x

)

gi
rl

n
:

λ
x

.g
(x

)

s
:

G
Q

s
(λ

x
.G

Q
o
(λ

y
.l
(x

,
y
))

)

(←
G

E
l i
)

F
ig

.
5
.
Q

u
a
n
ti

fi
er

sc
o
p
e

a
m

b
ig

u
it
y

d
er

iv
a
ti

o
n

w
it

h
g
en

er
a
l
el

im
in

a
ti

o
n
-r

u
le

s

112 N. Francez

To see this effect better, consider the following sentence, using a transitive
verb and two quantified noun-phrases, taken to exhibit the quantifier scope am-
biguity. By Barker’s continuation passing semantics, one needs to compute two
different CPSs to account for the two scopes.

(4) Every girl loves some boy
Abbreviate the meaning of the subject generalized quantifier λP∀x.g(x) ⇒ P (x)
as GQs, and that of the object λP∃y.b(y)∧P (y) as GQo. The two readings OWS
(object wide-scope) and SWS (subject wide-scope) of (4) are given by:

GQo(λy.GQs(λx.l(x, y)))

GQs(λx.GQo(λy.l(x, y)))

Consider the derivations in Figure 5 for the OWS (left) and SWS (right) readings.
We make use of the derived rule Ex (exchange), a known derived rule in L.

Note that the location of the words in the displayed proof is insignificant, as
premisses may be ordered arbitrarily. It is only the order of Γ , the set of open
assumptions, that determines the actual location of the word as a contributor of
an open assignment. Inspecting the two proofs, one can recognize again how each
np-meaning, i.e., each of GQs, GQo, “sends itself” as part of the continuation
of the other, similarly to the types of meaning-computations via CPSs. The use
of the (Ex) derived-rule might be interpreted as the counterpart of [2] changing
CPSs for obtaining the same effect of “changing the order of computation”.

4 Conclusion

This paper proposed general elimination-rules for the directed implications in
the Lambek-calculus L, studying the effect of non-commutativity and periph-
erality, the two characteristics of L, on the formulation of such rules in this
setting. The effect of such rules on L-based grammars, a central topic in Type-
Logical grammar, was shown, albeit by examples, to induce continuation-based
semantics for the L-derived natural-language phrases. This connection is still in
need to be formulated as a theorem, charachterising it more precisely. iIt was
noticed already in [3] that continuation semantics is related to a proof-theoretic
counterpart. There, continuation semantics is related to type-raising (a derived
rule in L), viewed as classical negation, while here the connection is with (the
GE-extension of) L itself. While the lexicon in the example grammar in [3] uses
simpler categories than the lexicon used here, the meanings are much more com-
plicated, represented by terms in the λμ-calculus (the CH-counterpart of classical
logic). The derivations of the two scopes rely on that calculus not having the
Church-Rosser property. Here, we remain at the intuitionistic-linear level.

Of further interest is also augmenting the calculus with general (directed-
implications) introduction-rules, which also discharge an assumption in an an
auxiliary premiss, concluding arbitrary consequences of the introduced formula.

Lambek-Calculus with GE-Rules and Continuation Semantics 113

This has direct bearing on deriving meaning of, for example, relative clauses.
This is currently under joint investigation by Chris Barker and myself.

Acknowledgements. I wish to Thank Sara Negri for providing some useful
insight on the inversion-principle and on proof-composition. I also Thank Michael
Kaminski, who, by “refusing to understand”, forced me to clarify to myself better
the issues involved. Thanks to Gila Halperin and Gilad Ben-Avi for various useful
comments on early drafts. Thanks to Philippe de Groote for helping to clarify
the relationship with his work on continuation semantics and type-raising. The
research was partially funded by the VP fund for the promotion of research at
the Technion.

References

1. Chris Barker. Continuation and the nature of quantification. Natural Language
Semantics, 10:211–242, 2002.

2. Chris Barker. Continuation in natural language. In Hayo Thielecke, editor, Pro-
ceedings of the Fourth ACM SIGPLAN Continuations Workshop (CW’04), 2004.

3. Philippe de Groote. Type raising, continuations, and classical logic. In Robert
van Rooy and Martin Stokhof, editors, Proceedings of the thirteenth Amsterdam
Colloquium, pages 97–101. ILLC, Amsterdam, 2001.

4. Felix Joachimski and Ralph Matthes. Short proofs of normalization for a lambda
calculus, permutative conversions and Gödel’s T. Archives for Mathematical Logic,
42(1):59–87, 2003.

5. Joachim Lambek. The mathematics of sentence structure. Amer. Math. monthly,
65:154–170, 1958.

6. Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter
Meulen, editors, Handbook of Logic and Language, pages 93–178. North Holland,
1997.

7. Sara Negri. Varieties of linear calculi. J. of Phil. Logic, 32(6):569–590, 2002.
8. Sara Negri and Jav Von Plato. Structural Proof Theory. Cambridge University

Press, Cambridge, UK. 2001.
9. Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.

Mathematical Structures in Computer Science, 11:511–540, 2001.
10. Jan Von Plato. Natural deduction with general elimination rules. Archive Mathe-

matical Logic, 40:541–567, 2001.
11. Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical

Computer Science, 1(2):125–159, 1975.
12. Jeff Polakow and Frank Pfenning. Natural deduction for intuitionistic non-

commutative linear logic. in Proceedings of the 4th International Conference on
Typed Lambda Calculi and Applications (TLCA’99), LNCS 1581, pages 295–309.
Springer-Verlag, April, 1999.

13. Dag Prawitz. Natural Deduction: Proof-Theoretical Study. Almqvist and Wicksell,
Stockholm, 1965.

14. Dag Prawitz. Ideas and results in proof theory. In J. Fenstad, editor, Proc. 2nd
Scandinavian Symposium. North-Holland, 1971.

15. Mark Steedman. The Syntactic Process. MIT Press, 2000.

A Note on the Complexity of Constraint
Interaction: Locality Conditions and Minimalist

Grammars�

Hans-Martin Gärtner1 and Jens Michaelis2

1 ZAS, Jägerstr. 10–11, 10117 Berlin, Germany
gaertner@zas.gwz-berlin.de

2 Universität Potsdam, Institut für Linguistik, PF 601553, 14415 Potsdam, Germany
michael@ling.uni-potsdam.de

Abstract. Locality Conditions (LCs) on (unbounded) dependencies have
played a major role in the development of generative syntax ever since the
seminal work by Ross [22]. Descriptively, they fall into two groups. On
the one hand there are intervention-based LCs (ILCs) often formulated
as “minimality constraints” (“minimal link condition,” “minimize chain
links,”“shortest move,”“attract closest,” etc.). On the other hand there
are containment-based LCs (CLCs) typically defined in terms of (general-
ized) grammatical functions (“adjunct island,”“subject island,”“specifier
island,” etc.). Research on LCs has been dominated by two very general
trends. First, attempts have been made at unifying ILCs and CLCs on the
basis of notions such as “government” and “barrier” (e.g. [4]). Secondly,
research has often been guided by the intuition that, beyond empirical
coverage, LCs somehow contribute to restricting the formal capacity of
grammars (cf. [3–p. 125], [6–p. 14f]). Both these issues, we are going
to argue, can be fruitfully studied within the framework of minimalist
grammars (MGs) as defined by Stabler [25]. In particular, we are going
to demonstrate that there is a specific asymmetry between the influence
of ILCs and CLCs on complexity. Thus, MGs, including an ILC, namely,
the shortest move condition (SMC) have been shown to belong to the
mildly context-sensitive grammar formalisms by Michaelis [14]. The same
has been shown in [16, 18] for a revised version of MGs introduced in [26],
which includes the SMC and an additional CLC, namely, the specifier is-
land condition (SPIC). In particular [14] and [16, 18] show that, in terms
of derivable string languages, both the original MG-type and the revised
MG-type constitute a subclass of the class of linear context-free rewrit-
ing systems (LCFRSs) in the sense of [28, 29], and thus, a series of other
formalism classes all generating the same class of string languages as
LCFRSs. Here we will demonstrate that removing the SMC from the re-
vised MG-version increases the generative power in such a way that the
resulting formalism is not mildly context-sensitive anymore. This sug-
gests that intuitions to the contrary notwithstanding, imposing an LC
as such, here the SPIC, does not necessarily reduce formal complexity.

� This work has been carried out partially funded by DFG-grant. Thanks to two
anonymous referees for valuable comments on a previous version of this paper.

2005, LNAI 3492, pp. 114–130, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

A Note on the Complexity of Constraint Interaction 115

1 Introduction

Locality Conditions (LCs) on (unbounded) dependencies have played a major
role in the development of generative syntax ever since the seminal work by
Ross [22]. Descriptively, they fall into two groups. On the one hand there are
intervention-based LCs (ILCs), very sketchily illustrated in (1).

[. . . α . . . [. . . β . . . γ . . .]] (1)

An ILC constrains dependencies between α and γ across an intervening β,
where intervention is defined in terms of c-command as well as the features and
position of β relative to the features and positions of α and γ. ILCs are often for-
mulated as “minimality constraints” (“minimal link condition,”“minimize chain
links,”“shortest move,”“attract closest,” etc.) on the assumption that more min-
imal dependencies could have been formed between α and β, and/or β and γ.
On the other hand containment-based LCs (CLCs) exist such as given in (2).

[. . . α . . . [β . . . γ . . .]] (2)

A CLC constrains dependencies between α and γ across a constituent β
containing γ but excluding α. Typically the containers are defined in terms of
(generalized) grammatical functions (“adjunct island,”“subject island,”“specifier
island,” etc.). Research on LCs has been dominated by two very general trends.
First, attempts have been made at unifying ILCs and CLCs on the basis of
notions such as “government” and “barrier” (see e.g. [4]). Secondly, research has
often been guided by the intuition that, beyond empirical coverage, LCs somehow
contribute to restricting the formal capacity of grammars (cf. [3–p. 125], [6–p.
14f]). Both these issues, we are going to argue, can be fruitfully studied within
the framework of minimalist grammars (MGs) as defined by Stabler [25].1 In
particular, we are going to show that there is a specific asymmetry between
the influence of ILCs and CLCs on complexity. Crucial starting point for our
demonstration is the fact that MGs, including an ILC, namely, the shortest
move condition (SMC) have been shown to belong to the mildly context-sensitive

1 Research on LCs in terms of categorial grammar (CG) has taken at least two rather
divergent directions. Within the combinatory brand of CG, CCG, there has been a
tendency to refrain from syntactically encoding LCs. This is based on the intuition
that “the origin of constraints on long-range dependencies ultimately lies in semantic
coherence properties of the nonstandard constituents that combination into islands
creates [. . .]” [27–p. 65]. The type logical approach to CG has implemented CLCs
rather directly in terms of unary operators that “block associativity” [19] or cause
“structural inhibition” [20]. For one complexity result on the resulting multi-modal
CGs, showing that under certain conditions they preserve the weak context-freeness
of the Lambek calculus, see [9]. It would be attractive to compare and contrast
our results on MGs more closely with CG-approaches. (In particular, it might be
worth to explore hybrid versions of both CG-brands, especially given the fact that
CCGs undergoing certain restrictions have been shown to constitute a mildly context-
sensitive formalism (cf. [28, 29]), and thus, to be rather closely related to MGs.)
However, this will have to be left for further research.

116 H.-M. Gärtner and J. Michaelis

grammar formalisms by Michaelis [14]. The same has been shown in [16] for a
revised version of MGs defined in [26], which includes the SMC and an additional
CLC, namely, the specifier island condition (SPIC).

The type of MG introduced in [25] provides an attempt at a rigorous al-
gebraic formalization of the perspectives currently adopted within the linguistic
framework of transformational grammar (see e.g. [5]). An MG, roughly speaking,
is a formal device which specifies a countable set of finite, binary (ordered) trees
each being equipped with a leaf-labeling function assigning a string of features
to each leaf, and with an additional binary relation, the asymmetric relation of
(immediate) projection, defined on the set of pairs of siblings. The base of an
MG is formed by a lexicon (a finite set of single node trees in the above sense)
and two structure building functions: merge (combining two trees) and move
(transforming a given tree). Both functions build structure by canceling partic-
ular matching instances of features within the leaf-labels of the trees to which
they are applied. The closure of the lexicon under these two functions is the set
of trees characterized by the MG. As shown in [14], this MG-type constitutes a
mildly context-sensitive formalism in the sense that it provides a weakly equiv-
alent subclass of linear context-free rewriting systems (LCFRSs) [28, 29]. Inde-
pendent work in [8] and [17] has proven the reverse to hold as well. Hence, MGs
as defined in [25], beside LCFRSs, join to a series of formalism classes—among
which there are e.g. the class of local unordered scattered context grammars [21],
the class of multicomponent tree adjoining grammars in their set-local variant of
admitted adjunction (cf. [29]), the class of multiple context-free grammars [24],
or the class of simple positive range concatenation grammars [1]—all generating
the same class of string languages. For a list of some further of such classes of
generating devices see e.g. [21].

Inspired, i.a., by the linguistic work presented in [12], in [26] a revised type of
an MG has been proposed whose departure from the version in [25] can be seen
as twofold: the revised type of an MG neither employs any kind of head move-
ment nor covert phrasal movement, and an additional restriction is imposed on
the move-operator regulating which maximal projection may move overtly into
the highest specifier position. Deviating from the operator move as originally
defined in [25], a constituent has to belong to the transitive complement closure
of a given tree or to be a specifier of such a constituent in order to be movable
at all. Employing and extending the methods developed in [14] and [17], it was
shown in [16, 18] and [15] that, in terms of derivable string languages, the re-
vised MG-type is not only subsumed by LCFRSs, but is identical to a particular
subclass of the latter: the righthand side of each rewriting rule of a correspond-
ing LCFRS involves at most two nonterminals, and if two nonterminals appear
on the righthand side then only simple strings of terminals are derivable from
the first one. Whether the respective classes of string languages derivable by
the corresponding LCFRS-subclass and the class of all LCFRSs—and thus the
respective classes of string languages derivable by the class of revised MGs as
defined in [26] and the class of MGs as defined in [25]—are identical seems to
be an open problem. Here, we will demonstrate that removing the SMC from

A Note on the Complexity of Constraint Interaction 117

the revised MG-version increases the generative power in such a way that the
resulting formalism is not mildly context-sensitive. This suggests that intuitions
to the contrary notwithstanding, imposing an LC as such, here the SPIC, does
not necessarily reduce formal complexity.

The paper is structured as follows: Section 2 introduces (revised) minimalist
grammars in two versions, one standard (MGs, Definition 3) and one without
the SMC (MG-SMCs, Definition 4). In Section 3 we show, how to derive the lan-
guage {a2n |n ∈ IN}, i.e. a language without the constant growth property, and
thus a non-mildly context-sensitive language. Section 4 provides a short con-
clusion and an outlook on further research. Throughout the rest of the paper
we use the term minimalist grammar and its abbreviation MG in order to re-
fer to an MG of the revised type as defined in [26], unless explicitly indicated
otherwise.

2 (Revised) Minimalist Grammars

Throughout we let ¬Syn and Syn be a finite set of non-syntactic features and
a finite set of syntactic features, respectively, in accordance with (F1) and (F2)
below. We take Feat to be the set ¬Syn ∪ Syn.

(F1) ¬Syn is disjoint from Syn andpartitioned into a setPhon of phonetic features
and a set Sem of semantic features.

(F2) Syn is partitioned into a set Base of (basic) categories, a set Select of se-
lectors, a set Licensees of licensees and a set Licensors of licensors. For
each x∈Base, usually typeset as x, the existence of a matching x′ ∈Select ,
denoted by =x, is possible. For each x∈Licensees, usually depicted as -x,
the existence of a matching x′∈Licensors, denoted by +X, is possible. Base
includes at least the category c.

Definition 1. An expression (over Feat) is a five-tuple 〈Nτ , �
∗
τ ,≺τ , <τ , labelτ 〉

obeying (E1)–(E4).

(E1) 〈Nτ , �
∗
τ ,≺τ 〉 is a finite, binary (ordered) tree defined in the usual sense: Nτ

is the finite, non-empty set of nodes, and �∗τ and ≺τ are the respective binary
relations of dominance and precedence on Nτ .2

(E2) <τ⊆ Nτ × Nτ is the asymmetric relation of (immediate) projection that
holds for any two siblings in 〈Nτ , �

∗
τ ,≺τ 〉, i.e., for each x ∈ Nτ different

from the root of 〈Nτ , �
∗
τ ,≺τ 〉 either x <τ siblingτ (x) or siblingτ(x)<τ x

holds.3

2 Thus,
∗
τ is the reflexive-transitive closure of τ ⊆ Nτ ×Nτ , the relation of immediate

dominance on Nτ .
3 For each x ∈ Nτ different from the root of 〈Nτ ,

∗
τ ,≺τ 〉, siblingτ (x) is the (unique)

sibling of x. If x <τ y for any x, y ∈ Nτ , x is said to (immediately) project over y.

118 H.-M. Gärtner and J. Michaelis

>

<

gα1 α2

<

fκ >

β1 <

hβ2 β3

Fig. 1. A typical expression over Feat

(E3) labelτ is the leaf-labeling function, i.e., a total function from the set of all
leaves of 〈Nτ , �

∗
τ ,≺τ 〉 into Syn∗Phon∗Sem∗.4

(E4) 〈Nτ , �
∗
τ ,≺τ 〉 is a subtree of the natural interpretation of a tree domain.5

We take Exp(Feat) to denote the set of all expressions over Feat .

Let τ = 〈Nτ , �
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat).6

For each x ∈ Nτ , the head of x (in τ), denoted by headτ (x), is the (unique)
leaf of τ with x�

∗
τ headτ (x) such that each y ∈ Nτ on the path from x to headτ (x)

with y �= x projects over its sibling, i.e. y <τ siblingτ (y). The head of τ is the
head of τ ’s root. τ is said to be a head (or simple) if Nτ consists of exactly one
node, otherwise τ is said to be a non-head (or complex).

A five-tuple υ= 〈Nυ , �
∗
υ ,≺υ , <υ , labelυ 〉 is a subexpression of τ if 〈Nυ , �

∗
υ ,≺υ 〉

is a subtree of 〈Nτ , �
∗
τ ,≺τ 〉, and if <υ=<τ �Nυ×Nυ

and labelυ= labelτ �Nυ
hold.7

Thus, υ ∈ Exp(Feat). Such an υ is a maximal projection (in τ) if υ’s root is
a node x ∈ Nτ such that x is the root of τ , or such that siblingτ (x) <τ x.
MaxProj (τ) is the set of all maximal projections in τ .

4 For each set M , M∗ is the Kleene closure of M , including ε, the empty string. Mε
denotes the set M ∪ {ε}. For any K, L ⊆ M∗, KL is the product of K and L under
concatenation, i.e., the (string) set {kl | k ∈ K, l ∈ L} ⊆ M∗.

5 We take IN to denote the set of all non-negative integers. A tree domain is a non-
empty set Nυ ⊆ IN∗ such that for all χ ∈ IN∗ and i ∈ IN it holds that χ ∈ Nυ

if χχ′ ∈ Nυ for some χ′ ∈ IN∗, and χi ∈ Nυ if χj ∈ Nυ for some j ∈ IN with
i < j. 〈Nυ ,

∗
υ ,≺υ 〉 is the natural (tree) interpretation of Nυ in the case that for all

χ, ψ ∈ Nυ it holds that χ υ ψ iff ψ = χi for some i ∈ IN, and χ ≺υ ψ iff χ = ωiχ′

and ψ = ωjψ′ for some ω, χ′, ψ′ ∈ IN∗ and i, j ∈ IN with i < j.
6 Note that the leaf-labeling function labelτ can easily be extended to a total labeling

function �τ from Nτ into Feat∗∪{< , >}, where < and > are two new distinct symbols:
to each non-leaf x ∈ Nτ we can assign a label from {< , >} by �τ such that �τ (x) = <

iff y <τ z for y, z ∈ Nτ with x τ y, x τ z, and y ≺τ z. In this sense a concrete
τ ∈ Exp(Feat) is depictable in the way demonstrated in Fig. 1.

7 For a binary relation r ⊆ A×B, A and B being two sets, and for any two sets A′ and
B′, r �A′×B′ is the restriction of r to A′×B′, i.e., the set {〈a, b〉 ∈ r | a ∈ A′, b ∈ B′}.
In case r is a function, we also write r �A′ instead of r �A′×B′ .

A Note on the Complexity of Constraint Interaction 119

>

specifier >

specifier >

specifier <

head

complement

Fig. 2. The typical structure of a (minimalist) expression over Feat

compτ ⊆ MaxProj (τ) × MaxProj (τ) is the binary relation defined such that
for all υ,φ ∈ MaxProj (τ) it holds that υ compτ φ iff headτ (rυ) <τ rφ, where
rυ and rφ are the roots of υ and φ, respectively. If υ compτ φ holds for some
υ,φ ∈ MaxProj (τ) then φ is a complement of υ (in τ). comp+

τ is the transitive
closure of compτ . Comp+(τ) is the set {υ | τ comp+

τ υ}.
specτ ⊆ MaxProj (τ) × MaxProj (τ) is the binary relation defined such that

for all υ,φ ∈ MaxProj (τ) it holds that υ specτ φ iff rφ = siblingτ (x) for some
x ∈ Nτ with rυ �

+
τ x �

+
τ headτ (rυ), where rυ and rφ are the roots of υ and φ,

respectively. If υ specτ φ for some υ,φ ∈ MaxProj (τ) then φ is a specifier of υ
(in τ). Spec(τ) is the set {υ | τ specτ υ}.

An υ ∈ MaxProj (τ) is said to have, or likewise, to display (open) feature f if
the label assigned to υ’s head by labelτ is non-empty and starts with an instance
of f ∈ Feat .8

τ is complete if its head-label is in {c}Phon∗Sem∗, and if the label of each
other leaf is in Phon∗Sem∗. Hence, a complete expression over Feat is an expres-
sion that has category c, and this instance of c is the only instance of a syntactic
feature within all leaf-labels.

The phonetic yield of τ , denoted by YPhon(τ), is the string which results
from concatenating in “left–to–right–manner” the labels assigned to the leaves
of 〈Nτ , �

∗
τ ,≺τ 〉 via labelτ , and replacing all instances of non-phonetic features

with the empty string, afterwards.
An υ = 〈Nυ , �

∗
υ ,≺υ , <υ , labelυ 〉 ∈ Feat(Exp) is (label preserving) isomorphic

to τ if there is a bijective function i from Nτ onto Nυ with x �τ y iff i(x) �υ i(y),
x ≺τ y iff i(x) ≺υ i(y), x <τ y iff i(x) <υ i(y) for x, y ∈ Nτ , and with
labelτ (x) = labelυ (i(x)) for each x ∈ Nτ being a leaf of τ . i is an isomorphism
(from τ to υ).

Definition 2. For τ = 〈Nτ , �
∗
τ ,≺τ , <τ , labelτ 〉 ∈ Exp(Feat) with Nτ = tNυ for

some t∈ IN∗ and some tree domain Nυ , and for r∈ IN∗, (τ)r denotes the expres-
sion shifting τ to r, i.e., the expression 〈Nτ(r) , �

∗
τ(r) ,≺τ(r) , <τ(r) , labelτ(r)〉 over

8 Thus the expression depicted in Fig. 1 has feature f , while its specifier and its
complement have feature g and h, respectively.

120 H.-M. Gärtner and J. Michaelis

Feat with Nτ(r) = rNυ such that the function iτ(r) from Nτ onto Nτ(r) with
iτ(r)(tx) = rx for all x ∈ Nυ is an isomorphism from τ to (τ)r .9

For υ, φ ∈ Exp(Feat) let χ = 〈Nχ , �
∗
χ ,≺χ , <χ , labelχ〉 be a complex expression

over Feat with root ε such that (υ)0 and (φ)1 are the two subexpressions of χ
whose roots are immediately dominated by ε. Then χ is of one of two forms: in
order to refer to χ we write [<υ,φ] if 0 <χ 1, and [>υ,φ] if 1 <χ 0.

Definition 3 ([26]). A minimalist grammar (MG) is a five-tuple of the form
G = 〈¬Syn, Syn, Lex ,Ω, c〉 with Ω being the operator set consisting of the struc-
ture building functions merge and move defined w.r.t. Feat as in (me) and (mo)
below, respectively, and with Lex being a lexicon (over Feat), i.e., Lex is a fi-
nite set of simple expressions over Feat , and each lexical item τ ∈ Lex is of the
form 〈Nτ , �

∗
τ ,≺τ , <τ , labelτ 〉 such that Nτ = {ε}, and such that labelτ (ε) is in

(Select ∪ Licensors)∗Base Licensees∗Phon∗Sem∗.

(me) merge is a partial mapping from Exp(Feat) × Exp(Feat) into Exp(Feat).
A pair 〈υ,φ〉 with υ,φ ∈ Exp(Feat) belongs to Dom(merge) if for some
x ∈ Base and κ, λ ∈ Feat∗, conditions (i) and (ii) are fulfilled:10

(i) the head-label of υ is =xκ (i.e. υ has selector =x), and

(ii) the head-label of φ is xλ (i.e. φ has category x).

Then,

(me.1) merge(υ,φ) = [<υ′,φ′] if υ is simple, and

(me.2) merge(υ,φ) = [>φ′, υ′] if υ is complex,

where υ′ and φ′ result from υ and φ, respectively, just by deleting the instance
of the feature that the respective head-label starts with (cf. Fig. 3).

=xκ

υ

xλ

φ �
>

if υ is complex

λ

φ′

κ

υ′

if υ is simple

<

κ

λ

φ′

Fig. 3. merge(υ, φ) according to (me)

(mo) move is a partial mapping from Exp(Feat) to Exp(Feat). An υ ∈ Exp(Feat)
is in Dom(move) if for some -x ∈ Licensees and κ ∈ Feat∗, (i)–(iii) are true:

9 For any t ∈ IN∗ and N ⊆ IN∗, tN is just the concatenation product {t}N , i.e., the
set {tx |x ∈ N} ⊆ IN∗ (cf. fn. 4). Note that for each τ = 〈Nτ ,

∗
τ ,≺τ , <τ , labelτ 〉

from Exp(Feat), a t ∈ IN∗ and tree domain Nυ with Nτ = tNυ exist by (E4).
10 For a partial function f from a set A into a set B, Dom(f) is the domain of f , i.e.,

the set of all x ∈ A for which f(x) is defined.

A Note on the Complexity of Constraint Interaction 121

(i) the head-label of υ is +Xκ (i.e. υ has licensor +X),

(ii) there is exactly one φ ∈ MaxProj (υ) with head-label -xλ for some
λ ∈ Feat∗ (i.e. there is exactly one φ ∈ MaxProj (υ) that has feature -x),
and

(iii) there exists a χ ∈ Comp+(υ) with φ = χ or φ ∈ Spec(χ).

Then,

move(υ) = [>φ′, υ′] ,

where υ′ ∈ Exp(Feat) results from υ by canceling the instance of +X the
head-label of υ starts with, while the subtree φ is replaced by a single node
labeled ε. φ′ ∈ Exp(Feat) arises from φ by deleting the instance of -x the
head-label of φ starts with (cf. Fig. 4).

+Xκ
-xλ

υ

φ

>

λ

φ′

�
κ

υ′

Fig. 4. move(υ) according to (mo)

Note that it is condition (ii) of (mo) which can be seen as providing a strict imple-
mentation of the shortest movement condition (SMC): competing open licensees
in one and the same given expression do not allow one to derive a complete
expression from the given one. It is condition (iii) of (mo) which provides an
implementation of the specifier island condition (SPIC): a constituent has to
belong to the transitive complement closure of a given tree or to be a specifier
of such a constituent in order to be movable at all.

Since we are interested in the question of whether the generative capacity of
our formalism is affected by giving up the SMC and sticking to the SPIC, we
next present the definition of an MG without SMC.

Definition 4 ([26]). A minimalist grammar without SMC (MG-SMC) is a five-
tuple of the form 〈¬Syn, Syn, Lex ,Ω, c〉 where Ω is the operator set consisting
of the structure building functions merge and move-SMC defined w.r.t. Feat as
in (me) above and (mo-SMC) below, respectively, and where Lex is a lexicon over
Feat defined as in Definition 3.

(mo-SMC) move is a partial mapping from Exp(Feat) to Pfin(Exp(Feat)).11 An
υ ∈ Exp(Feat) is in Dom(move) if for some -x ∈ Licensees and κ ∈ Feat∗,
(i)–(iii) are true:

11 Pfin(Exp(Feat)) is the class of all finite subsets of Exp(Feat).

122 H.-M. Gärtner and J. Michaelis

(i) the head-label of υ is +Xκ (i.e. υ has licensor +X),

(ii) there is some φ ∈ MaxProj (υ) with head-label -xλ for some λ ∈ Feat∗

(i.e. there is some φ ∈ MaxProj (υ) that has feature -x), and

(iii) there exists a χ ∈ Comp+(υ) with φ = χ or φ ∈ Spec(χ).

Then,

move-SMC(υ) =

⎧⎪⎨
⎪⎩[>φ′, υ′]

∣∣∣∣∣∣∣
φ ∈ MaxProj (φ) with head-label -xλ
for some λ ∈ Feat∗ such that there is
a χ ∈ Comp+(υ) for which φ = χ or
φ ∈ Spec(χ)

⎫⎪⎬
⎪⎭ ,

where υ′ ∈ Exp(Feat) results from υ by canceling the instance of +X the
head-label of υ starts with, while the subtree φ is replaced by a single node
labeled ε. φ′ ∈ Exp(Feat) arises from φ by deleting the instance of -x the
head-label of φ starts with (cf. Fig. 4).

Let G = 〈¬Syn, Syn, Lex ,Ω, c〉 be an MG, respectively an MG-SMC. Then the
closure of G, CL(G), is the set

⋃
k∈IN CLk(G), where CL0(G) = Lex , and for

k ∈ IN, CLk+1(G) ⊆ Exp(Feat) is recursively defined as the set

CLk(G) ∪ {merge(υ,φ) | 〈υ,φ〉 ∈ Dom(merge) ∩ CLk(G) × CLk(G)}
∪ {move(υ) | υ ∈ Dom(move) ∩ CLk(G)}

in case G is an MG, respectively as the set

CLk(G) ∪ {merge(υ,φ) | 〈υ,φ〉 ∈ Dom(merge) ∩ CLk(G) × CLk(G)}

∪
⋃

υ ∈Dom(move-SMC)∩CLk(G)
move-SMC(υ),

in case G is an MG-SMC. The set {YPhon(τ) | τ ∈ CL(G) and τ complete}, denoted
by L(G), is the (string) language derivable by G.

Definition 5. A set L is a minimalist language (ML) if L = L(G) for some
MG G, and it is a minimalist language without SMC (ML-SMC), if L = L(G) for
some MG-SMC G.

Corollary 1. Each ML has the constant growth property.12 �

This corollary is an immediate consequence of the fact (cf. [16, 18]) that each
language derivable by an MG in the sense of Definition 3 is a language derivable
by a linear context-free rewriting system (LCFRS) in the sense of [28, 29].

12 For each set M and each L ⊆ M∗, L has the constant growth property, if there is
an N ∈ IN such that for all w1, w2 ∈ L with |w1| < |w2|, and for which there is no
w3 ∈ L with |w1| < |w3| < |w2|, it holds that |w2| − |w1| ≤ N . Here, for w ∈ M∗,
|w| denotes the length of w.

A Note on the Complexity of Constraint Interaction 123

2.1 The Notion of a Relevant Expression

The notion of what is a relevant expression within the closure of an MG, respec-
tively MG-SMC, G, is of some importance. We refer to an expression τ ∈ CL(G)
as relevant if it serves to derive a complete expression. In particular, we want to
emphasize that both in the case of an MG and in the case of an MG-SMC, condi-
tion (iii) of the definition of the move-operator guarantees the following: when-
ever an expression υ ∈ CL(G) can be employed in order to generate a complete
expression, there is no maximal projection ψ ∈ MaxProj (υ) such that ψ displays
an unchecked licensee and is properly contained within some χ ∈ Comp+(υ).

To put it differently, if we applied the move-operator to some υ ∈ CL(G)
such that some χ ∈ Comp+(υ) becomes a specifier of the resulting expression, it
would be impossible to check off in a later derivation step any licensee feature
displayed by some ψ ∈ MaxProj (υ) properly contained in χ, because applying
the move-operator to υ, ψ would end up in a position not matching condition
(iii) of the definition of the move-operator, and this property is inherited by any
expression subsequently derived. In the syntactic literature this is often referred
to as a “freezing effect.” Complying with this effect, we can, in the case of an
MG-SMC, “hide” an unbounded, finite number of different instances of the same
licensee “along” the transitive complement closure of a single expression; and we
exploit exactly this possibility in the next section, when we define an MG-SMC

deriving a language which is not mildly context-sensitive.

3 A Non-mildly Context-Sensitive ML-SMC

We are now going to present an MG-SMC deriving a language which does not
fulfil the constant growth property, namely, the language {a2n |n ∈ IN}.

Example 1. Assume Gex = 〈¬Syn, Syn, Lex ,Ω, c〉 to be the MG-SMC for which

Sem = ∅ Base = {c, x, y, z} Licensees = {-l, -m}

Phon = {a} Select = {=c, =x, =y, =z} Licensors = {+L, +M}

and for which Lex consists of the following 9 simple expressions:13

β1 = w-m β2 = =wx-l

γ1 = =x+My-m γ2 = =y+Lz-l γ3 = =zy-l γ4 = =zx-l

δ1 = =x+Mc δ2 = =c+Lca

Instead of a strictly formal proof that L(Gex) = {a2n |n ∈ IN} we will give
the crucial details in a descriptive manner.

13 Since all lexical entries of Gex are heads, we simply represent each of them by its
(unique) label.

124 H.-M. Gärtner and J. Michaelis

<

x-l -m

Fig. 5. The expression merge(β2, β1)

<

+My-m <

-l ...
<

-l

-m

Fig. 6. Starting the derivation cycle by merging with γ1

Each derivation of an expression belonging to CL(Gex) necessarily starts by
merging expressions β2 and β1, yielding an expression which displays category
x and contains a maximal projection displaying licensee -m (cf. Fig. 5). Hence,
the expression merge(β2, β1) can be selected by γ1 as well as δ1.

The lexical items γ1, γ2, γ3 and γ4 can be employed to run a derivation cycle
in order to double the number of maximal projections appearing in a given ex-
pression and displaying licensee -l. The cycle starts by merging with expression
γ1 (cf. Fig. 6) and next checking an instance of licensee -m; and the cycle stops
by merging with γ4, yielding an expression displaying category x (cf. Fig. 9). In
between, repeatedly carrying out sequences of applying merge with γ2, apply-
ing move-SMC, and applying merge with γ3 lead to the doubling of unchecked
instances of licensee -l (cf. Fig. 7 and 8). The end of the cycle is “indicated”
by an appearance of licensee -m: after a maximal projection displaying -m has
become the lowest embedded constituent displaying any unchecked licensee at
all, we necessarily have to merge with γ4 to prevent the derivation from running
into a configuration which makes it impossible to finally generate a complete
expression.

Note that, whenever move-SMC can be applied to some υ ∈ CL(Gex), a max-
imal projection φ ∈ MaxProj (υ) displaying the corresponding licensee trigger-
ing move-SMC always belongs to the transitive complement closure of υ, i.e.
Comp+(υ). The crucial point now is that, although υ may contain even several
different maximal projections displaying the same licensee, in any case only the
lowest maximal projection from Comp+(υ) can be moved in order to derive a
complete expression.14

14 Recall the notion of a relevant expression.

A Note on the Complexity of Constraint Interaction 125

<

+Lz-l <

-l ...
<

-l >

<

-m <

-l ...
<

-l ε

Fig. 7. Within the cycle after merging with γ2: “preparing” the doubling of the lowest

instance of licensee -l which now gets checked off by move-SMC, but, virtually, has

already been ”reinstantiated” within the label of γ2

<

y-l >

<

-l <

-l ...
<

-l >

<

-m <

-l ...

Fig. 8. Within the cycle after merging with γ3: the instance of licensee -l “reinstanti-

ated” before by means of the label of γ2 (cf. Fig. 7), now has been “doubled” by means

of the label of γ3

After having merged with γ4, the repetition of the derivational cycle, just
described, is blocked by merging with δ1 instead of merging with γ1 (cf. Fig. 10).
Then, after the “cycle end–marking” instance of licensee -m has been checked
through an application of move-SMC, all instances of licensee -l get successively

126 H.-M. Gärtner and J. Michaelis

<

x-l <

-l ...
<

-l

-m

Fig. 9. Stopping the derivation cycle by merging with γ4

<

+Mc <

-l ...
<

-l

-m

Fig. 10. Leaving the derivation cycle by merging with δ1

<

+Lya >

<

a ...
<

a >

<

<

-l ...
<

-l ε

Fig. 11. Finishing the derivation by successively merging with δ2 and checking off the

remaining instances of licensee -l, thereby introducing an instance of an a for each -l

A Note on the Complexity of Constraint Interaction 127

checked by first merging with δ2 and applying move-SMC afterwards. Hence,
in particular, for each instance of licensee -l exactly one instance of (phonetic)
feature a is introduced via merging with δ2 (cf. Fig. 11). Therefore, {a2n |n ∈ IN}
is in fact the language derived by Gex.

4 Conclusion and Outlook

We have shown that removing the SMC from MGs increases their generative
capacity beyond mild context-sensitivity. In particular, we have provided an
exemplary MG-SMC deriving the language {a2n |n ∈ IN}, i.e. a language lacking
the constant growth property. Importantly, this effect arises in spite of the fact
that MG-SMCs are constrained by a CLC, namely, the SPIC. This suggests that,
intuitions to the contrary notwithstanding, the imposition of LCs on grammars
as such, in the case at hand the SPIC, does not automatically reduce their
generative capacity.

Note also that closely in keeping with some further suggestions in [12], a
certain type of a strict minimalist grammar (SMG) has been introduced in [26]
as well. This MG-type allows only movement of constituents belonging to the
transitive complement closure of a tree. But in contrast to the MG-type match-
ing our Definition 3, the triggering licensee feature may head the head-label of
any constituent within the reflexive-transitive specifier closure of a moving con-
stituent. Furthermore, due to the general definition of a lexical item of an SMG,
an SMG does not permit the creation of multiple specifiers during the course of
a derivation. Beside these differences, SMGs have implemented the SMC within
the definition of the move-operator in the same way MGs have. SMGs and MGs
have been shown to be weakly equivalent in [15, 18] confirming a conjecture ex-
plicitly stated in [26]. Note that, if we defined strict minimalist grammars without
SMC (SMG-SMC) by relaxing the condition (ii) of the move-operator as we did
for MGs in Definition 4, our example MG-SMC would also match the criteria
such an SMG-SMC had to fulfil. This, of course, is of interest, since it suggests
that providing the implementation of the SPIC with a “final strictness,” does
not prevent us from being able to derive non-mildly context-sensitive languages
when giving up the SMC.

There has recently been made another interesting attempt, namely, by Ko-
bele [11], to look at the consequences concerning the generative capacity of MGs
when changing the original definition from [25] and allowing a certain kind of
feature percolation. In fact, Kobele proved that, if the syntactic features of a
head are presented as strings which are checked “from left to right,” and if move-
ment to a specifier position generally allows for the possibility that the syntactic
features of the specifier’s head are inherited by the attracting head in such a
way that they become an integral part of the syntactic features of the attract-
ing head, then MGs modified in this respect allow one to derive any language of

128 H.-M. Gärtner and J. Michaelis

type 0.15,16 We conjecture that this is true of MG-SMCs as well. The reason for
this is that MG-SMCs (i.e. MGs for which the SPIC, the specifier island condition,
SPIC, but not the SMC, the shortest move condition, hold) on the one hand and
MGs of the Kobele-type (i.e. MGs generally allowing for feature percolation from
specifiers to heads) on the other appear to constitute complementary pictures of
one and the same thing. The sort of feature percolation Kobele considers allows
to “collect” instantiations of the same feature type within a single head-label
without violating the SMC, since only the first feature instantiation within the
head-label is visible to the move-operator. The implementation of the SPIC in
MGs discussed in our paper and the simultaneous dropping of the SMC allows to
“collect” instantiations of the same feature type within the transitive complement
closure, since only the lowest, i.e. most deeply embedded, instantiation can be
checked off without leading to a crashing derivation. This connection certainly
deserves more attention and has to be elaborated quite carefully.17

To end on a more linguistic note, we observe that constraint interaction
among LCs (ILCs/CLCs) and its impact on the generative capacity of gram-
mars is still deplorably understudied and consequently not very well understood.
Our own attempts here have obviously been rather sketchy. Further research
will have to provide an exact characterization of the LC/complexity connec-
tion. This would involve a clearer picture of the tight relation between the
SMC and LCFRSs, which has guided much of the research on the complexity of
MGs.18

15 This is at least true, when—by means of an “MG-external” encoding—we treat type
0-languages as recursively enumerable subsets of the natural numbers, because what
Kobele concretely proves, is that each arbitrary abacus in the sense of [13] can be
simulated by a corresponding MG. How to define such an MG directly deriving a
given type 0-language, seems to be an open problem.

16 Note also that “permitting percolation of unchecked features of the attracted head
into the attracting one,”“representing head-features as strings” and, depending on
this representation, “demanding a left–to–right–checking of features” should be seen
as properties of a particular instantiation of a slightly more general case still im-
plying the same result on generative capacity (cf. [11]). Here we concentrate on this
particular instantiation, just with the intend of keeping our exposition somewhat
simpler and more accessible.

17 To support our conjecture, it should also be mentioned here that Kobele [10] pointed
out, how in a different framework, namely, mirror theoretic grammars (MTGs) de-
veloped in [10] as a formalization of the syntactic theory proposed in [2], it is possible
to define an (unrestricted) MTG deriving the language {a2n |n ∈ IN}. In fact, MTGs
in their unrestricted version can be seen as strongly related to the MG-type Kobele
considers in [11] exactly in the way they allow for feature percolation—though, in
place of percolation from specifiers to heads, we are concerned with percolation from
complements to (selecting) heads in the MTG-case—and the corresponding kind of
percolation is employed to derive {a2n |n ∈ IN} by an MTG.

18 Note that a prima facie problematic domain of grammar, namely, multiple-wh-
fronting constructions (cf. [23]) can be harmonized with the SMC if, among other
things, one assumes wh-cluster formation triggered by special clustering features.

A Note on the Complexity of Constraint Interaction 129

References

1. Pierre Boullier. Proposal for a natural language processing syntactic backbone.
Report No. 3342, INRIA research reports, INRIA Rocquencourt, 1998. Available
at http://www.inria.fr/rrrt/rr-3342.html.

2. Michael Brody. Mirror theory. Syntactic representation in perfect syntax. Linguis-
tic Inquiry, 31:29–65, 2000.

3. Noam Chomsky. On wh-movement. In P. Culicover, T. Wasow, and A. Akmajian,
editors, Formal Syntax, pages 71–132. Academic Press, New York, NY, 1977.

4. Noam Chomsky. Barriers. MIT Press, Cambridge, MA, 1986.
5. Noam Chomsky. The Minimalist Program. MIT Press, Cambridge, MA, 1995.
6. Noam Chomsky. Beyond explanatory adequacy. MIT Occasional Papers in Lin-

guistics (MITOPL #20), Massachusetts Institute of Technology, Department of
Linguistics and Philosophy, Cambridge, MA, 2001.

7. Philippe de Groote, Glyn Morrill, and Christian Retoré, editors. Logical Aspects
of Computational Linguistics (LACL ’01), LNAI Vol. 2099. Springer, Berlin, Hei-
delberg, 2001.

8. Henk Harkema. A characterization of minimalist languages. In de Groote et al.
[7], pages 193–211.

9. Gerhard Jäger. On the generative capacity of multi-modal categorial grammars.
Research on Language and Computation, 1:105–125, 2003.

10. Gregory M. Kobele. Formalizing mirror theory. Grammars, 5:177–221, 2003.
11. Gregory M. Kobele. Features moving madly. Research on Language and Compu-

tation, to appear. Draft version available at http://www.linguistics.ucla.edu/
people/grads/kobele/papers.htm.

12. Hilda Koopman and Anna Szabolcsi. Verbal Complexes. MIT Press, Cambridge,
MA, 2000.

13. Joachim Lambek. How to program an (infinite) abacus. Canadian Mathematical
Bulletin, 4:295–302, 1961.

14. Jens Michaelis. Derivational minimalism is mildly context-sensitive. In M. Moort-
gat, editor, Logical Aspects of Computational Linguistics (LACL ’98), LNAI Vol.
2014, pages 179–198. Springer, Berlin, Heidelberg, 2001.

15. Jens Michaelis. Observations on strict derivational minimalism. In FGMOL ’01.
Preproceedings. Joint conference of the 6th conference on Formal Grammar and
the 7th meeting of the Association for Mathematics of Language, Helsinki, 2001.

16. Jens Michaelis. On Formal Properties of Minimalist Grammars. PhD thesis, Pots-
dam University, Potsdam, 2001.

17. Jens Michaelis. Transforming linear context-free rewriting systems into minimalist
grammars. In de Groote et al. [7], pages 228–244.

18. Jens Michaelis. Implications of a revised perspective on minimalist grammars.
Draft, Potsdam University, 2002. Available at http://www.ling.uni-potsdam.

de/~michael/papers.html.
19. Michael Moortgat. Multimodal linguistic inference. Journal of Logic, Language

and Information, 5:349–385, 1996.
20. Glyn Morrill. Type Logical Grammar. Kluwer, Dordrecht, 1994.
21. Owen Rambow and Giorgio Satta. Independent parallelism in finite copying par-

allel rewriting systems. Theoretical Computer Science, 223:87–120, 1999.
22. John R. Ross. Constraints on Variables in Syntax. PhD thesis, MIT, Cambridge,

MA, 1967.
23. Catherine Rudin. On multiple questions and multiple wh-fronting. Natural Lan-

guage and Linguistic Theory, 6:445–501, 1988.

130 H.-M. Gärtner and J. Michaelis

24. Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple
context-free grammars. Theoretical Computer Science, 88:191–229, 1991.

25. Edward P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics (LACL ’96), LNAI Vol. 1328, pages 68–95. Springer,
Berlin, Heidelberg, 1997.

26. Edward P. Stabler. Remnant movement and complexity. In G. Bouma, G.-J. M.
Kruijff, E. Hinrichs, and R. T. Oehrle, editors, Constraints and Resources in Natu-
ral Language Syntax and Semantics, pages 299–326. CSLI Publications, Stanford,
CA, 1999.

27. Mark Steedman. Surface Structure and Interpretation. MIT Press, Cambridge,
MA, 1996.

28. K. Vijay-Shanker, David J. Weir, and Aravind K. Joshi. Characterizing structural
descriptions produced by various grammatical formalisms. In 25th Annual Meeting
of the Association for Computational Linguistics (ACL ’87), Stanford, CA, pages
104–111. ACL, 1987.

29. David J. Weir. Characterizing Mildly Context-Sensitive Grammar Formalisms.
PhD thesis, University of Pennsylvania, Philadelphia, PA, 1988.

Large Scale Semantic Construction for Tree
Adjoining Grammars�

Claire Gardent1 and Yannick Parmentier2

1 CNRS, LORIA, Campus Scientifique BP 239, 54 Nancy
Claire.Gardent@loria.fr

http ://www.loria.fr/~gardent
2 INRIA, LORIA, Campus Scientifique BP 239, 54 Nancy

Yannick.Parmentier@loria.fr

Although Tree Adjoining Grammars (TAG) are widely used
for syntactic processing, there is to date no large scale TAG available
which also supports semantic construction. In this paper, we present a
highly factorised way of implementing a syntax/semantic interface in
TAG. We then show how the resulting resource can be used to perform
semantic construction either during or after derivation.

1 Introduction

Developing a Tree Adjoining Grammar which contains the information necessary
for building the basic compositional semantics of sentences is a highly complex
engineering task. To ensure consistency, ease of writing, of maintainance and
of debugging, it is therefore important that this information be described at
the appropriate level of abstraction. In the first part of this paper (sections
2 and 3), we show how to achieve a highly factorised integration of semantic
information into a Tree Adjoining Grammar (TAG, [1]) using a particularly
expressive grammar formalism recently developed by [2].

The second part of the paper shows how the resulting TAG can be used
to support semantic construction that is, to associate the sentences generated
by the grammar with a semantic representation. Contrary to other linguistic
frameworks such as Lexical Functional Grammar, Head Driven Phrase Structure
Grammar or Categorial Grammar, there is no clear consensus in TAG on how
to perform semantic construction. This is because Tree Adjoining Grammar
associates a derivation not with one, but with two structures namely, a derivation
tree and a derived tree ; and because it is unclear which of these two structures
best supports semantic construction. As TAG elementary trees localise predicate-
argument dependencies so that derivation trees resemble semantic dependency
trees, the TAG derivation tree has long been taken to provide an appropriate

� We would like to thank Benoit Crabbé, Denys Duchier, Djamé Seddah and Eric
Villemonte de la Clergerie for many useful discussions on the themes discussed in
this paper.

2005, LNAI 3492, pp. 131–146, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

Abstract.

132 C. Gardent and Y. Parmentier

basis for semantic construction. Nevertheless, it has repeatedly been shown that
the derivation tree alone does not provide all the information needed to perform
semantic construction in all possible cases [3, 4, 5] ; and that information from
the derived tree also has to be taken into account.

In the second part of this paper, we show how the semantic TAG described in
the first part can be used to support two types of semantic construction processes
both of them being based on the information contained in the derived tree. The
first method follows traditional unification based grammar practice and performs
semantic construction during parsing (section 4) while in the second, semantic
construction is done after parsing on the basis of a derivation forest thereby
benefiting from the structure sharing supported by such packed representations
(section 5). The resulting framework lays the basis for a systematic exploration
of the relative efficiency of these two semantic construction methods for TAGs.

2 A TAG with a Unification-Based Syntax/Semantics
Interface

In this section, we present the semantic TAG we use for semantic construction.
Section 3 shows how to produce such a TAG on a large scale for a core fragment
of French. Sections 4 and 5 show how to use it to perform semantic construction
in two different ways.

2.1 Feature-Based TAG

In the approach we present here, semantic representations are combined using
unification. To this end, we use a unification based version of LTAG namely,
Feature-based TAG. A Feature-based TAG (FTAG, [6]) consists of a set of (auxi-
liary or initial) elementary trees and of two tree composition operations : substi-
tution and adjunction. Substitution inserts a tree onto the leaf node of another
tree1 while adjunction (sketched in Fig. 1) inserts an auxiliary tree into a deri-
ved tree (i.e., either an elementary tree or a tree resulting from the combination
of a derived tree with an elementary tree by means either of adjunction or of
substitution).

In an FTAG, each tree node is associated with two feature structures called
top and bottom. The top feature structure encodes information that needs to
be percolated up the tree should an adjunction take place whilst the bottom one
encodes information that remains local to the node at which adjunction takes
place. During derivation, the unifications listed in Figure 2 take place.

2.2 Semantic Representation Language and Glue Mechanism

When doing semantic construction, two main questions arise : the choice of the
semantic representation language and that of the “glueing” mechanism used for

1 These leaf nodes must be marked for substitution and are graphically distinguished
by a downarrow.

Large Scale Semantic Construction for Tree Adjoining Grammars 133

Fig. 1. Adjunction in FTAG

– The adjunction at some node X with top features tX and bottom features bX , of
an auxiliary tree with root top features r and foot bottom features f entails the
unification of tX with r and of bX with f .

– The substitution at some node X with top features tX and bottom features bX , of a
tree with root top features t and root bottom features b entails the unification of tX

with t and of bX with b.
– At the end of a derivation, the top and bottom features of all nodes in the derived

tree are unified.

Fig. 2. Unifications in FTAG

putting semantic representations together. Mainly, semantic representations can
be feature structures, lambda terms or terms of some underspecified logic whe-
reas the available glueing mechanisms include unification, beta-reduction and
linear logic.

The approach described here assumes a unification-based semantic construc-
tion process where semantic representations are flat semantic representations al-
lowing for scope underspecification [7]. Importantly, the semantic parameters
(that is, the semantic indices representing the missing arguments of the semantic
functors) are represented by unification variables. As we shall see in the follo-
wing section, the syntax/semantics interface is specified by the grammar in such
a way that, as functors and arguments combine, semantic parameters are unified
by the semantic construction process with the appropriate semantic indices.

For instance, the semantic representation for the semantic functor every and
for its potential argument cat are as given in Example 1 and Example 2 where
atoms starting with a capital letter are unification variables.

Example 1. l0 : ∀(X,h1, h2), h1 ≥ Lrestr, h2 ≥ Lscope

Example 2. lc : cat(Y)

Combining these two representations using the grammar described in the
sequel will yield the representation for every cat given in Example 3 where in
particular, the restriction handle Lrestr in the representation of every is unified
with the label lc in the representation for cat and the individual variable X in
the representation of every with the variable Y in that of cat.

Example 3. l0 : ∀(X,h1, h2), h1 ≥ lc, h2 ≥ Lscope, lc : cat(X)

134 C. Gardent and Y. Parmentier

For details about the semantic representation language used, we refer the rea-
der to [5]. Note however that the choice of a particular semantic representation
language and of a particular glueing mechanism is not particularly important
here. Indeed the proposed approach could be applied to other semantic repre-
sentation languages using some other glueing mechanism.

2.3 Modelling the Relation Between Syntax and Semantics

Syntax specifies which syntactic constituent provides the semantic argument for
which semantic functor. To specify this mapping between syntax and semantics,
(i) each elementary tree in the grammar is associated with a semantic representa-
tion of the type sketched above and (ii) the appropriate nodes of the elementary
trees are decorated with semantic indices or parameters.

More precisely, the substitution nodes of the tree associated with a seman-
tic functor will be associated with semantic parameters whilst root nodes and
certain adjunction nodes will be labelled with semantic indices. As trees are
combined, semantic parameters and semantic indices are unified by the FTAG
unification mechanism thus specifying which semantic index provides the value
for which semantic parameter. So for instance, the trees for John, loves and Mary
will be as given in Figure 3. The tree for loves is associated with a semantic re-
presentation including the two semantic parameters x and y. These parameters
also label the subject and the object substitution nodes of this tree. Conversely,
the root node of the tree for John is labelled with the semantic index j. If the
string parsed is John loves Mary, this tree will be substituted at the subject
substitution node of the loves tree thus instantiating the semantic parameter x
to j. And similarly, for the Mary tree.

As we shall see in sections 4 and 5, a TAG equipped with the syntax/semantic
interface just described can be used to construct semantic representations either
during or after derivation. In the first case, the unification variables present both
on the tree nodes and in the semantic representations become instantiated as
substitution and adjunction take place and the overall semantics of a sentence
is the union of the semantic representations of the elementary trees entering
in its derivation modulo unification. In the second case, a semantic lexicon is
extracted from the grammar and used to do semantic construction on the basis
of the derivation forest.

Fig. 3. John loves Mary

Large Scale Semantic Construction for Tree Adjoining Grammars 135

3 Grammar and Metagrammar: Factorising the
Information

We now show how the metagrammar framework presented in [2] allows for a
highly factorised specification of the mapping between syntax and semantics
described in the preceding section. We start by presenting the grammar forma-
lism used. We then show how it can be exploited to specify the syntax/semantics
interface.

3.1 The Metagrammar Formalism

The metagrammar formalism presented in [2] can be seen as a generalisation
of Shieber’s PATR 2 language [8] which is expressive enough to encode (among
others) Tree Adjoining Grammars. The goal of such languages is to provide a
formalism that will allow a linguist to express her grammatical knowledge both
directly and economically : the language must be expressive ; it must also allow
for the factorisation of redundant information.

As space restrictions do not allow for a complete specification of this for-
malism, we restrict ourselves here to an informal presentation of the concepts
needed for the rest of this paper. The interested reader is invited to refer to
[2, 9, 10] for more details.

The metagrammar formalism (called XMG for eXtensible MetaGrammar)
used supports both syntactic and semantic information.

In the syntactic dimension, tree fragments can be described that will be
combined with other fragments to produce complete trees. These tree fragments
can be referred to by means of abstractions (also called classes). Similarly, in the
semantic dimension partial flat semantic formulae can be defined and referred
to by means of abstraction thus also allowing for the factorisation of semantic
information.

Syntactic and semantic abstractions can be combined using one of three
operations namely, conjunction (to accumulate information), disjunction (to
introduce non-determinism, used for instance to express diathesis) and inhe-
ritance. This last operation is used to specialise a class by incrementally ad-
ding pieces of information to a parent class. In our concrete syntax, conjunc-
tion, disjunction and inheritance are represented by ;, |, and import
respectively.

Finally, variables can be shared between classes in two main distinct ways.
In the first case, the shared variables belong to classes linked by an inheritance
relation and the scope of these variables can be explicitely managed using im-
port and export declarations. In the second case, the shared variables belong
to distinct inheritance chunks and sharing is made possible by a naming me-
chanism called interfaces which allow the global naming of a given value. For
instance, in the class Subj below, the node X is named sujNode in the interface
*= [sujNode=X] .

136 C. Gardent and Y. Parmentier

class Subj
declare ?X
{ <syn> { node [cat=s]

node X [cat=n]
} *= [sujNode=X]

}

The scope of an interface feature is global to its parent branch(es) in the
hierarchy. As the next section will illustrate, the value of an interface feature
can be shared by any other class by means of explicit variable sharing.

3.2 Specifying the Syntax/Semantics Interface

The main issue when developping a large scale semantic TAG is the correct
specification of the mapping between syntax and semantics (cf. section 2.3).
in [5], we define this mapping for a serie of syntactico-semantic constructions
which are known to be problematic for TAG. Here however, we are concerned
with the problem of how to design a large scale semantic TAG efficiently and
economically. In this respect, verbs or more generally, semantic functors are
of particular interest as they represent the bulk of the possible variations. We
therefore concentrate on verbs and show how to specify the syntax/semantic in-
terface for their various basic subcategorisation frames (transitive, intransitive,
etc.), their various possible argument realisations (e.g., cliticisation, extraction,
ommission) and their argument redistributions (active, passive, middle voice,
impersonnal passive, etc.). Due to space restrictions, other types of syntactico-
semantic constructions, although they can be handled by the grammar formalism
used, will not be discussed here.

As was illustrated in section 2.3, the specification of the syntax/semantics
interface consists in appropriately defining the mapping between grammatical
functions (subject, object, etc.) and thematic roles (e.g., agent, patient or more
neutrally, arg1, arg2). For instance, in an active mood sentence with two no-
minal arguments, the subject NP is mapped to the first semantic argument
(arg1) and the object to the second (arg2) whereas in a passive mood sen-
tence, the inverse occurs so that the subject NP maps to arg2 and the object to
arg1.

In a TAG, a word is associated with the set of trees reflecting the range of
syntactic configurations this word can occur in. For a verb (and more generally,
for any type of syntactic functor), this set can be quite big. For instance, in the
grammar for French developed by B. Crabbé [9], a transitive verb with nominal
arguments is associated with 153 trees each describing a distinct possible syn-
tactic environment for such a verb. More generally, Crabbé’s core grammar for
French totals roughly 3 500 trees for the verb fragment thereby covering 35 basic
subcategorisation frames.

Clearly, the specification of the syntax/semantics interface needs to be facto-
rised. We do not want to specify and maintain it for each of the 3 500 trees. To
extend Crabbé’s grammar with the syntax/semantics interface sketched in the
preceding section, we proceed as follows :

Large Scale Semantic Construction for Tree Adjoining Grammars 137

1. While the semantic indices labelling the tree nodes are all values of an idx
feature, they are also assigned a global name reflecting the grammatical func-
tion fulfilled by the node they label. For instance, the index x on the subject
node of the active tree for loves in Figure 3 will be assigned the global name
subjectI.

2. Similarly, the semantic indices occuring in the semantic representations are
assigned a global name reflecting their thematic role. For instance, the first
semantic argument of a binary relation is named arg1.

3. Finally, the mapping between grammatical functions and thematic roles is
specified by coindexing the values of grammatical and thematic indices. For
instance, in an active mode sentence tree, the value of subjectI will be
coindexed with that of arg1.

We now show how this works in more detail. We start by showing how the
syntactic information is factorised in Crabbé’s grammar. We then go on to show
how it can be extended with the syntax/semantics interface described in the
previous section.

The Syntax. In Crabbé’s metagrammar [9, 10], the syntactic information as-
sociated with a TAG elementary tree is factorised along the following three
dimensions.

First, grammatical function classes are defined which describe their struc-
tural properties. For instance, the Subject class is defined by the disjunc-
tion :

class Subject{
CanonicalSubject | RelativeSubject | whSubject | ...

}

where each subclass (CanonicalSubject, etc.) is associated with the appropriate
structural description2 e.g.,

CanonicalSubject RelativeSubject

S

N↓ V

N

N� S

N↓[wh=rel] V

Next, alternations are defined in terms of grammatical functions and verbal
morphology. For instance, the active and passive alternations for transitive verbs
are defined by the following conjunctions of classes :

2 To improve readibility, we represent tree descriptions using graphics rather than
logical formula. The precise tree language supported by XMG is described in [2].

138 C. Gardent and Y. Parmentier

class n0Vn1Active{
Subject ; Object ; activeVerbMorphology

}
class n0Vn1Passive{
Subject ; CAgent; passiveVerbMorphology

}

where passiveVerbMorphology, activeVerbMorphology, Object and CAgent
are abstractions over the TAG structural objects associated with these linguistic
notions.

Finally, the set of elementary trees associated with a given subcategorisation
frame (e.g., n0Vn1) is defined by the disjunction of its alternations e.g.,

class n0Vn1{
noVn1Active | noVn1Passive | n0Vn1dePassive | n0Vn1ShortPassive |
n0Vn1ImpersonalPassive | n0Vn1middle

}

Augmenting the Metagrammar with Semantic Information. As men-
tioned above, augmenting the metagrammar with semantic information involves
three steps.

First, the semantic indices labelling the tree nodes are named according to
their grammatical function. For instance, the index labelling the subject node
of the active tree for a transitive verb will be named subjectI. As shown be-
low, this is done using an interface constraint : for each possible realisation
of a subject, the value of the semantic index labelling the subject node is na-
med subjectI by means of the interface constraint. In practice, the naming
is done for a total of 12 grammatical functions (Subject, Object, Sentential-
Subject, SententialCObject, SententialDeObject,SententialAObject, Sententia-
lInterrogative, Iobject, CAgent, Oblique, Locative, Genitive) and 56 realisa-
tions.

Class Name CanonicalSubject RelativeSubject

Structural description

S

N↓[idx=I] V

N

N�[idx=I] S

N↓[wh=rel] V
Interface constraint subjectI = I subjectI = I

Second, the semantic indices occuring in the semantic representations are na-
med according to their thematic role. For instance, the first semantic argument
of a binary relation is named arg1. This naming is again enforced by an interface
constraint making the value globally accessible under that name.

Large Scale Semantic Construction for Tree Adjoining Grammars 139

class binaryRel
declare !L0 ?Rel ?E ?I1 !L1 ?I2 !L2

{
<sem>{

L0:Rel(E) ; L1:arg1(E,I1) ; L2:arg2(E,I2)
}
*=[rel=Rel,evt=E,arg1=I1,arg2=I2]

}

Third, the mapping between grammatical functions and thematic roles is
specified by coindexing the relevant values.

Consider the class n0Vn1 for instance, which describes the set of syntactico-
semantic configurations associated in a TAG (for French) with verbs taking two
nominal arguments. This set covers the configurations possible for the active
mode, the long passive mode, the passive in de, the short passive, the imper-
sonal passive and the middle form. For each of these modes, there are several
possible configurations depending on how the arguments are realised (i.e., whe-
ther the subject/object/agent/etc. is canonical, cliticised, extracted, etc.) so that
in total the class n0Vn1 includes 153 trees. The mapping between syntax and
semantics for these 153 trees is realised in the metagrammar by the labelling
described above and by the following class definition :

class n0Vn1{
binaryRel*=[evt=E,arg1=X,arg2=Y] ;
{ n0Vn1Active*=[subjectI=X,objectI=Y,vbI=E]
| n0Vn1Passive*=[subjectI=Y,cagentI=X,vbI=E]
| n0Vn1dePassive*=[subjectI=Y,genitiveI=X,vbI=E]
| n0Vn1ShortPassive*=[subjectI=Y,vbI=E]
| n0Vn1ImpersonalPassive*=[objectI=X,vbI=E]
| n0Vn1middle*=[objectI=Y,vbI=E]
}

}

That is, the set of syntactico-semantic configurations associated with the
n0Vn1 verbs is defined as consisting of (i) a binary semantic relation, (ii) trees
realising the different possible verbal modes and grammatical functions realisa-
tions and (iii) a mapping between the semantic parameters of the binary rela-
tions and the semantic indices labelling the nodes of the trees. Typically, the first
semantic parameter is identified with the subject semantic index in the active
mode and with the object in the passive mode. If the verb is impersonnal passive
(il est arrivé trois femmes), this first parameter is identified with the semantic
index of the object, etc.

In sum, the XMG formalism allows for a direct encoding of the linguistic
notions necessary to specify the syntax/semantics interface : naming of the se-
mantic indices labelling the tree nodes realising a given grammatical function,
naming of the semantic parameters according to their thematic role and coin-
dexing of the two types of indices. This expressivity in turn permits a clear and

140 C. Gardent and Y. Parmentier

economical encoding : the factorisation is high in that the relevant notions need
only be encoded once but are used by many distinct classes. For instance, the
labelling of the subject index is done once but is used by all of the 35 verb classes
defined in our current TAG for French (since all verb classes make use of the
subject class for their definition).

Using this encoding, a core TAG for French can be developped which encodes
the semantic information necessary to support semantic construction. We now
show how this information can be used in two different ways to compute the
compositional semantics of a sentence during (or after) parsing.

4 Derived Tree and Semantic Construction

A first, simple way to construct semantic representations based on the seman-
tic TAG described in the preceding section is to build these during derivation.
Such an approach can be integrated in a TAG parser by simply associating
the semantic representation of an elementary tree with the anchor node of
that tree (cf. Figure 4). Since an anchor node never merges with any other
node, there can be no conflict and the semantic representation remains untou-
ched modulo the unification its indices can undergo via the coindexing with
the tree nodes indices. The semantics of a derived tree is then the union of
the values of the semf features present in this tree after unifications have ta-
ken place. For instance, if the trees of Figure 4 are combined to parse the
string Jean aime beaucoup Marie, the resulting derived tree will be as given in
Figure 5.

Fig. 4. TAG elementary trees with semantics included

Large Scale Semantic Construction for Tree Adjoining Grammars 141

Fig. 5. TAG derived tree with semantics included

As mentioned above, the semantics associated with this tree is the union of
the semf values after the TAG imposed unifications (cf. section 2) have taken
place namely3

{ !e :aime(e,j,m), jean(j), marie(m), beaucoup(e)}

5 Derivation Forest, Semantic Lexicon and Semantic
Construction

As [5] shows, the semantic construction process described in the previous sec-
tion accounts for data which an approach based on the derivation tree does not.
However, the approach is open to two potential problems. First as mentioned in
[11], the semantic representations included in the elementary and derived tree
imply an infinite number of labels and individual variables so that in contrast
to standard FTAG, the formalism is theoretically no longer equivalent to TAG.
In practice of course, real sentences have finite lengths and so an upper bound
could be specified which makes the set of feature values finite. Another difficulty
however, is that the semantic information labelling the trees might decrease the
amount of sharing in a tabular parsing approach and thereby decrease parsing
efficiency.

To explore whether the second of these two objections is a real problem, we
thus investigate a second way to do semantic construction where in essence, the
semantic information is extracted from the TAG and used after parsing to re-
construct on the basis of the derivation tree the semantic representation of the
sentence under consideration. This second way of doing semantic construction
was first presented in [11]. We show here how it can be implemented on the
basis of a standard TAG parser and of the semantic TAG produced by the XMG

3 The ! stands for the existential quantifier.

142 C. Gardent and Y. Parmentier

(cf. section 2). We start by giving a simplified example illustrating the workings
of the approach. We then indicate first, how the required semantic lexicon can
be automatically extracted from the semantic TAG described in section 2 and
second, how semantic construction proceeds.

5.1 A Simple Example

A TAG derivation tree records how the elementary trees used to build a derived
tree are put together using the two combining operations permitted by TAG
namely, adjunction and substitution. Formally, the nodes of such a tree are la-
belled with tree names and its edges with a pair 〈 Op, Id 〉 where Op denotes
the combining operation used to combine the trees labelling the vertices of the
edge and Id identifies the node at which this operation takes place.

Now suppose that parsing the sentence Jean court yields the unique deriva-
tion tree pictured in Figure 6.

Fig. 6. Derivation tree for Jean court

And suppose further that the semantic lexicon extracted from the semantic
TAG for Jean and court is as follows :

TreeName n0V TreeName properN
Lemma court Lemma Jean
SemRepr !e :court(e,X) SemRepr jean(j)
ANodes 2.bot = [idx=e] ANodes
SNodes 1.top = [idx=X] SNodes
Root 0.bot = [idx=e] Root 0.bot = [idx=j]

That is, the semantic information extracted from each elementary tree and
stored in the semantic lexicon consists of the name of that tree, a record of the
lemma anchoring that tree, the semantic representation associated with that
tree and a record of the semantic information associated with the nodes (sub-
stitution nodes, nodes where adjunction can take place, root and foot nodes) of
that tree.

Semantic construction then proceeds by traversing the derivation tree, col-
lecting the lexical semantics associated in the semantic lexicon with each tree
present in the derivation tree and performing the unifications imposed by a TAG
derivation (cf. Figure 2). In this case, collecting the lexical semantics associated
with the two trees occurring in the derivation tree yields :

{ !e :court(e,X), jean(j)}

Large Scale Semantic Construction for Tree Adjoining Grammars 143

Two unification steps are furthermore involved. The first follows from the
substitution of τproperN jean at node 1 of τn0V court which entails the unification
of the feature structures of the root node of τproperN jean with those of node 1
in τn0V court :

1.top = 0.top = [idx=X]
1.bot = 0.bot = [idx=j]

The second unification step follows from the requirement that at the end
of a TAG derivation the top and bottom feature structures of all nodes in the
derived tree be unified. This requirement entails in particular the following uni-
fication : 1.top = 1.bot

0.top = 0.bot

As a result [idx=X] unifies with [idx=j] and the overall semantics of Jean
court becomes :

{ !e :court(e,j), jean(j)}

5.2 Extracting a Semantic Lexicon from the Semantic TAG

As the above example illustrates, the information required to perform seman-
tic construction on the basis of a derivation forest consists of : a treename, a
lemma, a semantic representation and four sets of path equations relating de-
rived tree nodes with the semantic information labelling these nodes. One set
of equations pertains to substitution nodes, another to nodes where adjunction
can take place, the third to the root node and the fourth to the foot node
if any.

That is, for each elementary tree present in the grammar, an entry is added
to the semantic lexicon which contains the above information. Note further that
the TAG used for parsing does not need to include any semantic information :
all the semantic processing is done after parsing has taken place and relies only
on the information contained in a (purely syntactic) derivation forest and in the
semantic lexicon.

To automatically extract the required semantic lexicon from the semantic
TAG G described in section 2, we proceed as follows :

1. For each tree T in G, all the nodes of T are numbered with their gorn ad-
dresses so that the nodes of the resulting grammar GG are then labelled
both with semantic indices and with a gorn address.

2. For each tree T in GG :

(a) create a tree ST by erasing on all nodes of T the semantic information
(if any) labelling that node. Call the resulting purely syntactic grammar
SG

(b) create an entry in the semantic lexicon which contains : the tree name,
the semantic representation associated by the metagrammar with this
tree, the gorn addresses and the semantic information labelling the tree
nodes

144 C. Gardent and Y. Parmentier

5.3 Computing Semantic Representations

As [12] shows, computing semantic representations from a parse forest is a na-
tural way to deal with the combinatorial explosion that can result from enu-
merating all the readings of a given sentence : by doing semantic construction
on the basis of the parse forest rather than the derivation trees, these shared
syntactic constituents that have a single reading can also be shared during se-
mantic construction. When combined with the use of an underspecified semantic
representation language, such an approach allows for a large amount of structure
sharing thereby increasing efficiency.

We now show how the semantic lexicon which, as shown in section 5.2 can be
automatically extracted from the semantic TAG described in section 2, can be used
in conjunction with a derivation forest to construct semantic representations.

A derivation forest is a compact representation of the derivation trees resul-
ting from a sentence parse. It can be represented either by an and-or graph or
by a context free grammar and its precise format may vary depending on the
degree of sharing required [13]. Here we assume a CFG format where rules are
of the form :

DTNodeId : : ElTreeId ← (DTNode/Op.Node)+

ElTreeId : : Lemma.TreeName

with DTNodeId, DTNode identifying nodes in the derivation tree, ElTreeId iden-
tifying the elementary tree labelling a derivation tree node, Op being either s for
substitution or a for adjunction and Node specifying the node in the elementary
tree at which Op takes place.

To perform semantic construction, we simply traverse the derivation forest
top-down, tabulating the constituents found and checking before constructing
an item that it is not already included in the table built so far. For a given deri-
vation tree in the parse forest, semantic construction is performed by a recursive
descent through the tree as follows.

To construct the semantics Sem of a derivation tree with root DTNodeId
given the parse forest rule DTNodeId : : ElTreeId ← Dtrs do

Lemma.TreeName ← terminal(DTNodeId)
HeadSem ← lexSem(Lemma.TreeName)
SemDtrs ← dtrsSem(HeadSem,Dtrs)
Sem ← HeadSem + SemDtrs

where terminal is a procedure mapping each derivation tree node to the termi-
nal node it directly or indirectly rewrites as within the parse forest ; lexSem is a
function retrieving from the semantic lexicon described in the preceding section,
the lexical semantics associated with a given 〈 Lemma, TreeName 〉 pair ; dtrs-
Sem is a procedure (described below) constructing the semantic representation
of the daughters of a rule given the head semantics of its lhs ; and + denotes the
operation accumulating the semantic representations being built. The dtrsSem
procedure is defined as follows.

Large Scale Semantic Construction for Tree Adjoining Grammars 145

To construct the semantic representation Sem of the daughters DTNodeId/
Op.NodeId | ODtrs of a rule given the head semantics HeadSem of its lhs, do

Lemma.TreeName ← terminal(DTNodeId)
HeadSemD1 ← lexSem(Lemma.TreeName)
tagUnify(HeadSem,HeadSemD1)
semODtrs ← dtrsSem(HeadSem,ODtrs)
Sem ← HeadSemD1 + semODtrs

where tagUnify performs the unification operations imposed on TAG derivations
(cf. Figure 2) on the node labels provided by the semantic lexicon described in
the previous section.

6 Conclusion

The proposal described in this paper is partially implemented. A core TAG for
French is available which extends the syntactic TAG described in [9, 10] to in-
clude semantic information as described in sections 3 and 2. Semantic construc-
tion during derivation is currently being implemented whilst semantic construc-
tion after derivation has been implemented using the above grammar, an XSLT
style sheet to extract the semantic lexicon and a prolog module to perform se-
mantic construction on the basis of this semantic lexicon and of the derivation
forest produced by Eric de la Clergerie’s Dyalog TAG parser.

The resulting framework thus supports the comparative evaluation of the two
semantic construction procedures for TAG as well as the development and testing
of large scale semantic TAGs for French. Future work will focus on comparing
the relative efficiency of these two semantic construction procedures ; extending
the grammar to include further types of alternations and in particular those des-
cribed in [14] and the LADL tables ; and experimenting with different semantic
representation languages and glueing mechanisms.

Références

1. Joshi, A.K., Schabes, Y. : Tree-Adjoning Grammars. In Rozenberg, G., Salomaa,
A., eds. : Handbook of Formal Languages. Springer (1997) 69–123

2. Duchier, D., Le Roux, J., Parmentier, Y. : The metagrammar compiler : An nlp ap-
plication with a multi-paradigm architecture. In : Second International Mozart/Oz
Conference - MOZ 2004, Charleroi, Belgique. (2004)

3. Frank, A., van Genabith, J. : GlueTag. Linear Logic based Semantics for LTAG.
In Butt, M., King, T.H., eds. : Proceedings of the LFG01 Conference, Hong Kong
(2001)

4. Kallmeyer, L. : Using an Enriched TAG Derivation Structure as Basis for Seman-
tics. In : Proceedings of TAG+6 Workshop, Venice (2002) 127–136

5. Gardent, C., Kallmeyer, L. : Semantic construction in ftag. In : Proceedings of
the 10th meeting of the European Chapter of the Association for Computational
Linguistics, Budapest, Hungary (2003)

146 C. Gardent and Y. Parmentier

6. Vijay-Shanker, K., Joshi, A. : Feature structures based tree adjoining grammars.
In : Proceedings of COLING, Budapest, Hungary (1988) 714–719

7. Copestake, A., Lascarides, A., Flickinger, D. : An algebra for semantic construction
in constraint-based grammars. In : Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, Toulouse, France (2001)

8. Shieber, S. : An Introduction to Unification-based Approaches to Grammar. CSLI
Lecture Notes (1986)

9. Crabbé, B., Duchier, D. : Metagrammar redux. In : International Workshop on
Constraint Solving and Language Processing - CSLP 2004, Copenhagen. (2004)

10. Crabbé, B. : Grammatical development with XMG. Submitted to LACL05 (2005)

11. Kallmeyer, L., Romero, M. : Ltag semantics with semantic unification. In : Procee-
dings of the 7th International Workshop on Tree Adjoining Grammar and Related
Formalisms, Vancouver, BC, Canada (2004) 155–162

12. Schiehlen, M. : Semantic construction from parse forests. In : Proceedings of the
16th International Conference on Computational Linguistics, Copenhagen (1996)

13. Alonso, M.A., Villemonte de la Clergerie, E., Diaz, V.J., Vilares, M. : 1. In : Rela-
ting Tabular Parsing Algorithms for LIG and TAG. Kluwer Academic Publishers
(2002) to appear, revised notes of a paper for IWPT2000.

14. Saint-Dizier, P. : Alternation and verb semantic classes for french : Analysis and
class formation. In : Predicative forms in natural language and in lexical knowledge
bases. Kluwer Academic Publishers (1999)

A Compositional Approach Towards Semantic
Representation and Construction of ARABIC

Bassam Haddad and Mustafa Yaseen

Faculty of Information Technology, University of Petra
P.O. BOX 3034, 11181 Amman, Jordan

Abstract. In spite of the fact that Arabic offers a well-studied theoretical and
historical linguistic knowledge, unfortunately, it has so far received very little
computational research and in particular on the level of semantic analysis. The
most computational research efforts have been focused on morphological and
syntax analysis, whereas research on Arabic computational semantics has been
neglected. The main goal of this paper is to characterize the fundamental issues
involved in deep logic-based semantic representation of Arabic sentences. The
focus of attention of this work is relying on the principle of compositionality for
Arabic semantic analysis, utilizing -calculus and type theory analysis of some
Arabic syntactical constituents for achieving a semantic construction model for
a fragment of ARABIC. Since semantic representation has to be compositional
in Natural Language Understanding Systems, this approach offers a central
concept for developing more intelligent and robust Arabic NLP systems.

1 Introduction Motivation

The status of research on Computational Arabic is very limited compared with
English and other European languages, which have already benefited from the
extensive research in this field. For the last two decades, concentration on Arabic
Language Processing has been focused on the processing of the structure of the
language from the morphological and syntactical points of view.

Despite the essence of these aspects for the NLP, achieving Arabic understanding
requires actually a differentiated and deep semantic processing.

Our research was initially directed towards building a comprehensive framework
for Arabic Language Processing electronically. The first stages of this project
addressed the morphological including spellchecking and the syntactic aspects of the
language; a Term Based Translator for the financial field, a Morphological Analyzer
and Spell Checker were developed [16], [24].

This paper addresses issues involved in deep semantic analysis of Arabic and tries
to put fundamentals for the semantic representation. Based on the compositionality of
some Arabic syntactical constituents utilizing -calculus and type theoretical analysis
of Arabic structure, a conceptual model for constructing meaning representation of
Arabic sentences, will be presented.

 and

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 147 – 161, 2005.
© Springer-Verlag Berlin Heidelberg 2005

{haddad, myaseen}@uop.edu.jo

In the following, we will discuss the Computational Semantics of Arabic and its
relationship to predicate logic first order as a meaning representation formalism.
Furthermore, we will present our view of Arabic Generalized Quantifiers and their
semantics as a good possibility to establish compositional rules.

1.1 Computational Semantics of Arabic

Computational Semantic of human languages is a non-trivial problematic issue of
natural language processing. Artificial Intelligence had a long time ago recognized the
necessity of performing some semantic inferences to achieve human language
understanding. Unfortunately, as mentioned above, despite the significance of this
issue, semantic processing based on logical models in the case of Arabic has so far
received very little attention.

Meanwhile, many Arabic morphological analyzers have been successful in solving
morphology related issues. Syntax on the other hand has been addressed by many
researchers and some success has also been achieved there [1], [2], [7], [10], [21], [22]
and many others.

There were few works reported on the knowledge representation and on the
computational semantic of Arabic. Most of the reported works treated this problem
superficially [3], [4], [5], [9], [11], [12]. Semantic analysis and in particular the problem
of the compositionality of Arabic has so far not been treated deeply, neither
linguistically nor logically [14], [15].

 One of the main factors for this negligence might reside in the complexity of this
field and, in the invisible collaboration between Artificial Intelligence, Arabists,
Logisticians and Linguisticians. Therefore, we believe, that there is a crucial need to
reconsider an adequate model for understanding and particularly for the semantic
processing of Arabic.

 In spite of the fact, that so far no existing formal theory of semantics is able to
provide a complete and consistent account of all the phenomena of Arabic and the
natural language in general, it remains beneficial to develop a model for semantic
processing even if that model is imperfect and incomplete.

2 ARABIC Semantic Processing

Semantic processing has to carry out different necessary semantic tasks in
interrelated and sometimes interchangeable semantic levels to achieve the
understanding capability: Semantic Composition, Semantic Resolution and Semantic
Evaluation. Semantic Composition can be viewed as the process of construction of
meaning representation for capturing the semantic potential of Arabic sentences.
Semantic Resolution and Semantic Evaluation are more concerned with
disambiguation under using context knowledge and scoping rules and extracting of
relevant information based on performing some deductions and inferences on the
semantic representation of a proposition[14], [23].

In this work, we will focus the attention on the fundamentals involved in the
compositionality of Arabic syntactical constituents.

148 B. Haddad and M. Yaseen

2.1 Compositionality of Arabic Propositions

The key idea underlying compositional approaches is that the meaning of a sentence
can be composed from the meaning of its syntactical constituents. As mentioned
previously, a semantic formalism has to be compositional on the level of semantic
representation to assure the modularity, declarativity and its practical employment in
robust natural language understanding systems.

 Despite the fact that predicate logic corresponds to well-studied and well-
understood formal representation formalisms, it does not provide any compositional
methods. Based on the type theory, -calculus offers a standard framework for filling
the most important aspects of this gap [20].

In spite of the importance of the Montagovian approach in the computational
linguistics, these methods are dealing with the semantics of sentences. One of the
most important methods for capturing such problems involved in text anaphoric
represents the Discourse Representation Theory (DRT). Combination of DRT with -
calculus leads to a compositional framework that is able to capture such problems [8],
[18], and [19]. This approach is beyond the scope of this paper. In this paper1, we are
more concerned with Arabic natural language understanding in the context of
constructing semantic representation of Arabic sentences by the means of employing
of -calculus for constructing logical formulas acting as meaning representation for
Arabic sentences.

2.2 Semantic Representation of Arabic

There are many reasons to choose a logical language as a target language for the
meaning representation. Logic represents a well-known meaning representation
formalism that differentiates between syntax and semantics. In addition, it enables
inferences over quantified descriptions, which are basic requirements for an adequate
meaning representation for any natural language.

 Furthermore representing Arabic sentences as logic programs has the facility of
performing some semantic reasoning tasks on a code based on Arabic predicates.
Therefore, we believe that embedding logical formulas with Arabic predicates is a
very interesting aspect of logic programming in the context of understanding Arabic.
 For example, formulas like (2.1) offer more flexibility and are more declarative in
performing some semantic tasks on Arabic sentences:

[/ x. y. ((x) (x, y)) /, x. y. (student(x) study(x, y))] (2.1)

 In general, a semantic formalism designed for practical use, has to satisfy some
important methodical principles and constraints. These basics include Compactness,
Modularity, Generality, Expressive Power, Efficiency, Implementation Independence,
and Theory Independence [8], [17]. It should be obvious that such constraints are
guidelines rather than absolute criteria for the design of meaning representation
formalism and therefore logic is covering these criteria in a large amount in the case
of Arabic.

1 A -DRT based Compositional Approach for Arabic is found in [15]

A Compositional Approach Towards Semantic Representation 149

.

 As Arabic is based on verb-noun in Verbal Sentences, and on noun-noun
opposition in Nominal Sentences, we can establish a semantic correspondence
between Arabic sentences and the first order predicate logic (PL1) formulas. This
concept means, that the selection of logic as a meaning representation formalism for
Arabic is capable of covering the most important constraints, which are expected to
be satisfied from a meaning representation formalism.

The verb as the head of an Arabic Verbal Sentence (VS) and its complements, or

the / /; i.e. the nominal predicate as the head of an Arabic Nominal Sentence (NS),

can be assigned to a predicate argument-structure of the corresponding PL1 formula.
An Arabic Nominal Sentence can be expressed by using constants or by using
quantified arguments of some predicates identifying the role of the subject or the
object and other semantic roles.

To interpret logical formulas, we need model theoretically an indirect denotation

function
M
g

 according a model = (,) and a variable denotation or simply

a denotation , where represents the Domain and represents the involved

semantic assignment mapping.
As our approach is proceeding from the perspective, that Arabic syntactical

constituents are able to exhibit relevant compositional rules to construct a semantic

representation for the most important Arabic sentence structures, the denotation

also has to be compositional. By indirect denotation, we mean, that our compositional
approach might need to transform an Arabic proposition in a meta or intermediate
logical form containing higher order logical formulas, which have to be transformed
in a PL1 based representation language as a target meaning representation form.
2.1.1 Representation of Lexical Entries
On the lexical level, an interpretation process might although need some conceptual
knowledge and some pragmatic contents in form of lexical semantic knowledge or
rules to supplement the meaning and to explain the possible word sense potentials of
some Arabic natural propositions in a specific domain. For example, interpreting of

concepts like (,/ / studying) or some events such as (/ / , he |she| it transports2)

might need some lexical semantic knowledge and pragmatic annotations about their
mode, involved objects and their roles, complements, compositional structure and
time. This knowledge base can be viewed as kind of a terminology or an ontology
describing the involved events and their deep thematic roles including their
compositionality encoded in the lexicon [24], [14].
 For example, in Arabic verbs are intransitive, transitive or di-transitive and therefore,
their current argument structure might depend on their contextual interpretation. The

lexical semantic denotation of the transitive verb (/ /, study|he|it studies) using

Arabic thematic role notation might be denoted by:

2 In this case, the subject pronoun is incorporated in the verb itself

150 B. Haddad and M. Yaseen

.

(, study)

CAT Vt

/ /
 (/ y. x. e. ((e,x,y) (e,) (e, x)

 (e,y) selectional restriction)/,
 y. x. e.(study(e,x,y) Event(e, studying) Actor(e,y)

 Object(e, y) selectional restriction)) (2.2)

The “selectional restriction” is used to enhance the thematic roles by allowing the
lexical entries to place certain semantic restrictions on the lexemes and phrases that
can accompany them in an Arabic sentence in form of basic common sense and

domain specific knowledge. The actor of the meaning of the verb (, study) / / ,

can be restricted, for instance, to the category student and human and so forth.
Arabic Nouns and Adjectives are principally considered as basic words, which can

be interpreted as single argument predicates:

(, Noun)/ / 3 x. , Noun / / (x) (2.3)

(Adj.)/ /, x. , Adj./ / (x) (2.4)

A noun in (2.3) means that there is something, which can have the property of being

the meaning of (, Noun)/ / , which represents usually the canonical form of the

noun itself.
In the following, we will concentrate our presentation on the compositional

potential of Arabic syntax.

3 The Analysis of the State of Definite in Arabic and Generalized
Arabic Quantifiers

The Arabic article (/ /,The) can be understood as a determiner. In the standard

analysis of determiners in the type theory, an article can be considered as determiner.

Determiners are generally of type , , , ,e t e t t ; i.e. it is a function taking an

expression of type ,e t to deliver an expression of type , ,e t t , which has to be

applied to an entity of type e in order to deliver the truth value t. This process can be
expressed using -calculus to produce a compositional framework for Arabic
sentences [14].

3 Compare it with (3.3), (3.4) and (3.8)

A Compositional Approach Towards Semantic Representation 151

.

Considering the Arabic article (/ /,The) as being a determiner is of type

, , , ,e t e t t and regarding that it is expressing a singular entity would result in

the following interpretation:

(, The)

CAT DET

ARG NUM sing

/ /
 as (/ , The)1 /1 where (3.1)

(/ /, The)11 P Q x.(y(P(y) x= y) Q(x))4 (3.2)

(/ /, The) 1 1 expresses, that there exists only one thing of being P and Q, which

implies that the cardinality of P has to be 1; i.e. |P|=1 and P Q .

 On the other hand, nominal phrases such as (/ /, The student) can be regarded
as quantifier. We proceed from the perspective that quantifiers logically correspond to
noun phrases and not to determiners and thy denote families of sets. They are used to
assert that a set has some property [6]. For example, “ x (x)” asserts that the set of
things which satisfy (x); i.e. {x| (x)} is a nonempty set.

The Arabic indications5 of indefinite articles such as the tanween (/ /) in the ending

of a nominal in the nominative such as in (/ /,(a) student) in (3.3) can be
interpreted as -quantifier.

(/ /, (a) student)

CAT Noun

NUM

ARG GEN

STATE

sing

fem

indef

 (3.3)

Since such endings in most cases are omitted in Arabic texts, we can directly
consider the nouns, in this context, as noun phrases or logically as quantifiers:

4 The function of a definite determiner in the sense of the DRT cannot only be the unique

quantification of an object.
5 In Arabic there are no indefinite articles such as the English “a”, “an” or the German “ein”

or “eine” etc. Furthermore, the definite article (/ /, The) is usually not separated from the noun.

152 B. Haddad and M. Yaseen

CAT (,)

NUM
ARG

STATE

Noun

sing

indef

/ /

 Q . x<1>..(, Noun/ / (x) Q(x)), (3.4)

where x<1> quantifies one individual in the set describing the (, Noun)/ / .

The rule in (3.4) expresses that it exists one individual having the property of being

an instance of the meaning of the Noun, i.e. the , Noun/ /

Based on the same principle, the quantifier as a noun phrase (/ /, The Student)
can also be interpreted as follows:

(,The - Student

CAT (, Noun)

NUM
ARG

STATE

sing

def

/ /
/ /

Q.(/ 1 (x)/, The1(x)).((/ (x)/ student (x)) Q(x))

 (3.5)

As Arabic differentiates between three kinds of numbers: singular, dual 6 and
plural, a noun phrase in dual form can also be considered as an Arabic quantifier
satisfying the duality:

(,The)

CAT DET

ARG NUM dual

/ /
 as 2(, The) 2/ / where

2
(, The) 2/ / P. Q .(/ 2 (x),The2(x)).(P(x) Q(x)) and |P| =2, P Q

 (3.6)
For example (/ / the two students) could be interpreted as follows:

, The - two - Students

CAT Noun

NUM

ARG STATE

CASE

Dual

def

nom

/ /

Q.(/ 2 (x)/,The2(x)).((/ (x)/,student(x)) Q(x))

 (3.7)

6 In Arabic, dual is not plural and a noun phrase in dual has its special cases, which can be

derived from its morphology

A Compositional Approach Towards Semantic Representation 153

.

In the case of the indefinite dual state, we have also introduced the numeric
determiner x<2>, expressing the restriction to only two individuals, which could have

the property of being the meaning of the Noun, , Noun/ / :

CAT (, Noun)

NUM
ARG

STATE

dual

indef

/ /
 Q. x<2>.(, Noun/ / (x) Q(x)) (3.8)

4 Generalized Arabic Quantifiers

It is clear that the quantifiers of the standard first-order logic are inadequate to
represent quantified Arabic sentences, and therefore we need to consider the so-called
generalized quantifiers. In our case, we call them Generalized Arabic Determiners or
Quantifiers.

 We have encountered some difficulties in capturing the information expressed by
the determiners and numerals in noun phrases. Arabic contains a large number of
determiners, which so far have not been logically analyzed in the context of their
compositional effect on the sentence structure.

In the analysis of the state of definites in Arabic, we adopt the view that quantifiers
correspond to noun phrase and not to determiners. They, therefore, do not necessarily
belong to the logical vocabulary. The truth or falsity of many natural language
quantifiers does not depend on a priori logic but much more on the underlying model.
Quantifiers or noun phrases such as (/ /, every student), (/ /, most of the
students) vary from model to model. On the other hand (/ /, every), as determiner is
logical, whereas (/ - /, most of the) is not [6].

In the following, we will present some of these Arabic determiners.

Similar to the analysis of determiners in the case the of (/ /, The) 11 , a

determiner differentiates between two things: a restriction “R” and a scope “S.” In
(3.1), P(x) represents the restricted set and Q(x) the scope; i.e. the proposition about
the restricted set.

Generally, a determiner can be expressed as

DETArab R. S. DETArab(x). (R,S) (4.1)

R S expresses in (4.1) that there are formulas expressing the restriction and the

scope of the determiner and they can be reduced by applying DETArab to R and S.

As mentioned previously, interpreting the truth-values of quantifiers requires some
conceptual knowledge about the relationship between a restriction and its scope and
their cardinalities in a specific domain.

154 B. Haddad and M. Yaseen

For example, the determiner (/ - /, most-of-the) or (/ /, most) should be true

if the |R S| holds relatively a large portion of |R|:

, most of the)

CAT DETArab

/ - /
 R. S. (/ - (x)/, most of the(x)). (R,S) , where

 |R S| > |R –S| (4.2)

In the following, we will present some of the common Arabic Generalized
Quantifiers:

/ - , at - least - n)

CAT DETArab

n - /
 R. S. (/n -- (x)/, at -least-n(x)). (R,S)

 is true if |R S| n (4.3)

, more than the half)

CAT DETArab

/ - - / R. S.(/ -- (x)/, more-than-

half(x)).(R,S) if |R S| > 0.5 * |R| (4.4)

, little - of

CAT DETArab

(/ - / R. S. (/ (x), little-of(x)).(R,S) (4.5)

 and R S| < r *|R| where r is a relative parameter determining when R should be
little.

The determiners like (/ /, total) and (/ /, all) can be interpreted as universal-

quantifiers as follows:

(, all, each

CAT DETArab

/ /
 P. Q. (x). (P(x) Q(x)) (4.6)

Based on (4.1) (/ /, all) can also be expressed as Generalized Arabic Determiner:

(, all, each

CAT DETArab

/ /
 R. S. (/ (x)/,all(x)).(R,S) where R S (4.7)

5 Rules for Construction Semantic Interpretation

In order to be able to compose logical formulas for Arabic sentences, we need to give
a compositional meaning to structured syntactical categories, like VS and NS. We
also need to assign meanings to the sub-syntactical categories of these types of
sentences in form of semantic compositional rules. It is also to emphasize that at this
stage of the semantic analysis, syntactical and semantic information has to be
evaluated within such compositional rules.

A Compositional Approach Towards Semantic Representation 155

5.1 Arabic Sentence Structure and Logical Forms

Arabic differentiates between different types of sentences: Verbal Sentences (VS),
Nominal Sentences (NS) and Copulative Sentences.

In contrast to European languages, a Verbal Sentence usually starts with a verb,
and in most cases has a V-S-O structure; i.e. Verb-Subject-Object structure. The
predicate of a NS usually is a noun, a pronoun, a propositional phrase or an adverb.
The predicate of a VS is a verb and its complements. Copulative sentences have a
Nominal Sentence or a Verbal Sentence as a predicate that is bound with the subject
through a copulative pronoun. Copulative Sentences start with subjects [13].

In the following we will present a fragment of a grammar for construction of
common Arabic sentences:

The meaning of a NS can be obtained, by applying the meaning of the opening

nominal constituent (, Sub.NS)/ . / ; i.e. the subject of Nominal Sentences to

the meaning of the predicate of Nominal Sentences (, Pr.NS)/ / :

 (, Sub.NS)/ . / (, Pr.NS)/ / (5.1)

If the (, Sub.NS)/ . / consists of a determiner and a noun; i.e. noun phrase, then

(, Sub.NS)/ . / means the application of the meaning of such a determiner to

the noun. The meaning of the whole NS can successively be achieved, by

determining the meaning of (, Pr.NS)/ / and the application

of (, Sub.NS)/ . / to it:

Ri1: NS (, Sub.NS)/ . / (Pr.NS)/ /,

 NS (, Sub.NS)/ . / (, Pr.NS)/ / (5.2)

Ri2: (, Sub.NS)/ . / DETArab , Noun/ / | , Gen. N.P/ . / |…

 (, Sub.NS)/ . / DET (, Noun)Arab / / | ... (5.3)

.....

Rj1: DETArab
(,The)

ARG NUM sing

/ /
| , most of the)/ - / |

 (, little-of)/ - / |…

(,The)

ARG NUM sing

/ /1 . .(/ () /, ()).(,)1R S x The x R S1 |

 (5.4)

156 B. Haddad and M. Yaseen

 , most of the)/ - / { R. S.(/ - (x), most-of-the(x)).(R,S)}|…

 (5.5)

Rk1: , Gen. N.P/ . / (1- G.Noun)/ /, (, 2 - G.Noun)/ /

 , Gen. N.P/ . / x. x y.((, 1- G.Noun)/ / (x)

 (, 2 - G.Noun)/ / (y) 1G .Rel. (x,y)) (5.6)

Rk2: (1- G.Noun)/ /, (, Noun)/ / (5.7)

 (, 1- G.Noun)/ / (,Noun)/ /

Rk3: (, 2 - G.Noun)/ / ArabDET
, Noun

CASE Gen

/ /
|...

 (2 - G.Noun)/ /, (,Noun)/ / (5.8)

 Rk4: 1G .Rel. (/ - /, Part-of)|… (5.9)

.....

Rl1: (, P.NS)/ / (, Noun)/ / | (, Adj.)/ / |…

 (,Noun)/ / x. ,Noun/ / (x) (5.10)

 (, Adj.)/ / x. ,Adj/ / . (x) (5.11)

Example:

Let us consider the following NS: (/ /, the weather beautiful7). The meaning

of the (, Sub.NS)/ . / “(/ /, the-weather)” is the application of the meaning

of the determiner (/ /, The) in (5.4) to the meaning of the noun (/ /, weather):

(, The weather)/ / :

 R. S.((/ 1(x)/,The1(x)). (R , S)) (, weather)/ /

 S.((/ 1(x)/,The1(x)). (x. (, weather)/ / (x) , S)) (5.12)

7 Although such nominal phrases do not contain any verbs or substantiated verbs, they represent

meaningful and complete Arabic Nominal Sentences.

A Compositional Approach Towards Semantic Representation 157

Applying the meaning of the adjective (/ /, beautiful), which takes the role of

(, Pr.NS)/ / as in (5,10) yields the meaning of the sentence (/ /, the

weather beautiful):

, the weather beautifu l // :

 S.((/ 1(x)/,The1(x)). (x. (, weather)/ / (x) , S)) (, beautiful)/ /

 (/ 1(x)/,The1(x)). (x. (, weather)/ / (x) , x. (, beautiful)/ / (x)), (5.13)

 which can be interpreted for a specific x1 as:

 : 1()x1 . ((x1) (x1)) or

 : 1 1()The x . (Weather(x1), beautiful(x1)) (5.14)

Considering determiners as a relation between the restriction and the scope sets,
requires the application of their meanings to the meaning of involved syntactical

constituents. Since VS start with verbs, and if the (/ /, Subject of a VS) is in definite

state, the meaning of the verbal subject as quantifier can be achieved by applying its
meaning to the meaning of the involved noun and the verbal predicate. The verb and
its object can take the role of the scope of the determiner of the subject:

Rm1: VS (, Verb)/ / (, Sub.VS)

CAT Vt

/ /
(, Object)/ / |…

VS (Sub.VS) (/, Object) (, Verb)

/ / / /, /
 (5.15)

.....

Rn1: (, Sub.VS)/ / DETArab , Noun/ / |…

 (, Sub.VS)/ / DET . (, Noun)Arab x / / |… (5.16)

Rn2: (, Object)/ / DETArab
, Noun

CASE Acc

/ /
|…

 (, Object)/ / DET . (, Noun) Arab y / / |… (5.17)

.....

158 B. Haddad and M. Yaseen

The meaning of VS of the structure V-S-O is the application of (, Sub.VS)/ /

to the denotation of (, Object)/ / and to the (, Verb)/ / .

Example:

The meaning of the noun phrase (/ /, the-student) as (, Sub.VS)/ / in the

Verbal Sentence (/ /, the student studies the computer (science)) can be

constructed as follows:

(, the student)/ - / : S. ((/ 1 (x)/,The1(x)).(x. (/ (x)/,student(x)), S))

 (Object) (, Verb)/ /, / / (5.4)(5.15)

Applying of the denotation of the object (Object)/ /, to the meaning of the

verb using the lexical information about the verb (/ /, study) in (3.1) yields the

following simplified semantic representation:

(, studies the computer(science))/ - / :

(/ 1 (y).((y), < x. e. ((e,x,y) (e,) (e, x)

 (e,y) the lexical selectional restriction >))/,

 The1(y). (computer(y) , < x. e. (study(e,x,y) Event(e, studying) Actor(e,y)

Object(e, y) the lexical selectional restriction >)))

 (5.18)

Applying (, Sub.VS)/ / to (5.18) yields:

(/ 1 (x). ((x), 1 (y). ((y), < e. ((e,x,y) (e,) (e, x)

 (e,y) the lexical selectional restriction >))) /, The1(x).(student(x) , The1(y).

(computer(y) , < e.(study(e,x,y) Event(e, studying) Actor(e,y) Object(e, y)

the lexical selectional restriction >)))) (5.19)

6 Overview and Conclusion

In this paper, we tried to present some of our results towards constructing a
compositional semantic model for deep semantic analysis of Arabic sentences. Our
approach is based on utilizing -calculus and the compositionality to construct

A Compositional Approach Towards Semantic Representation 159

semantic representations in form of logical formulas. In this context, we have
introduced the Arabic Generalized Quantifiers concept within different types of
Arabic sentences considering the order and meaning of some syntactical constituents
of Arabic. As Arabic has received very little computational research and in particular,
on the level of deep semantic analysis, we believe, that our contribution might
encourage some computational linguisticians and researchers to put more efforts in
this complex area of Arabic Natural Language Understanding. Meanwhile we are
working on extending and embedding these results in a compositional Arabic Model
considering the Discourse Representation Theory as a departure point to capture
Arabic discourses and features involved in anaphora representations in form of a -

DRT within a Unification based Grammar for Arabic.

 References

1. Al-Fedaghi, Al-Anzi: A New Algorithm to Generate Arabic Root-Pattern Forms.
Proceedings of the 11th National Computer Conference, Saudi Arabia, 1989

2. Ali, N.: Formalization and Computation of Arabic Syntax. Proceedings of the 11th
National Computer Conference, Saudi Arabia, 1989

3. Al-Johar, B., McGregor, J.: A Logical Meaning Representation for Arabic (LMRA).
Proceedings of the 15th National Computer Conference, Riyadh, Saudi Arabia, 1997

4. Al-Muhtaseb, H., Mellish C.: Towards an Arabic Upper Model: A proposal. Proceedings
of the 15th National Conference, Riyadh, Saudi Arabia, 1997.

5. Al-Waer, M. : The Syntactic, Semantic and Phonological Generation of The
Passivization in Standard Arabic, A Computational Linguistic Approach. (In Arabic),
Proceedings of the Conference on Using Arabic Language in IT, King AbdulAziz Library,
Riyadh, Saudi Arabia, 1992

6. Barwise J., Cooper R.: Generalized Quantifiers and Natural Language, Philosophy
Language and Artificial Intelligence, Ed. J. Kulas, J. H. Fetzer and T. Ranken, Kluwer
Academic Publishers, Dordrecht, Boston, London, 1988

. Beesley, K. R.: Finite-State Morphological Analysis and Generation of Arabic at Xerox
Research: Status and Plans 2001. ACL/EACL01: Conference of the European Chapter,
Workshop: Arabic Language Processing: Status and Prospects, 2001

8. Bos, J., Mastenbroek, E., McGlashan, S, Millies, S, Pinkal M. : A Compositional DRS-
based Formalism for NLP Applications. Report 59, VerbMobil, Universitaet des
Saarlandes, 1994

9. Chalabi, A.: Sakhr Arabic Lexicon. Proceedings of Nemlar International Conference on
Arabic Languages Resources and Tools, 2004

. Ditters. E.: A Formal Grammar for the Description of Sentences Structures in Modern
Standard Arabic. ACL/EACL01: Conference of the European Chapter, Workshop: Arabic
Language Processing: Status and Prospects, 2001

11. El-Dessouk, A. Nazif, El-Dessouk, O., Ahmad, A.: An Expert System for Understanding
Arabic Sentences. Proceedings of the 10th National Computer Conference, Jeddah, Saudi
Arabia, 1987

12. Fahmy, A.: Application of Artificial Intelligence and Expert Systems in Arabization.
Proceedings of The Meeting on Computer Arabization, King Saud University, 1994

13. Fischer, W. : Grammatik des klassischen Arabisch. Otto Harrassowitz. Wiesbaden 1972

160 B. Haddad and M. Yaseen

10

 7

. Haddad Bassam, Yaseen Mustafa: Towards Understanding Arabic: A Logical Approach

for Semantic Representation. ACL/EACL01: Conference of the European Chapter,
Workshop: Arabic Language Processing: Status and Prospect, 2001

15. Haddad Bassam, Yaseen M.: Towards Semantic Composition of Arabic : a λ-DRT Based
Approach. MT Summit IX, Workshop on Machine Translation for Semitic Languages:
Issues and Approaches, AMTA, New Orleans, 2003

A Compositional Approach Towards Semantic Representation 161

16. Haddad Bassam, Yaseen Mustafa: Spell Checking & Correcting Arabic Words. Journal
Al-Basaer, University of Petra, to appear in 2005

17. Harper, M.: The representation of noun phrases in logical form. PhD thesis, Brown
University 1990

18. Kamp, H.: A theory of truth and semantics representation. In: J, Groendijek, T. J. Stokhof,
Formal Methods in Study of Languages. Mathematish Centrum, Amsterdam, 1981

19. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer Academic Publishers, 1993
20. Montague, R.: The Proper Treatment of Quantification in Ordinary English. In:

Philosophy, Language and Artificial Intelligence, ed., J. Kulas, J. H. Fetzer and T. Rankin,
Kluwer Academic Publishers, Dordrecht, Boston, London 1988

21. Othman E., Shaalan K., Rafea A.: A Chart Parser for Analyzing Modern Standard Arabic
Sentences. MT Summit IX, Workshop on Machine Translation for Semitic Languages:
Issues and Approaches, AMTA, New Orleans, 2003

22. Ouersighni R.: A major offshoot of the Dinar-MBC project: AraParse, a morphosyntactic
analyzer for unvowelled Arabic texts. ACL/EACL01: Conference of the European
Chapter, Workshop: Arabic Language Processing: Status and Prospects, 2001.

23. Saint-Dizier, P.: Handling Quantifiers Scoping in a Semantic Representation in Natural
Language Sentences. In: Natural Language Understanding and Logic Programming. Ed.
V. Dahl and P. Saint-Dizier, 1988

24. Yaseen Mustafa, Haddad Bassam, Papgeorgios Harris, Stelios Piperidis, Hattab Mamoun,
Theophilopoulos, Krauer Steven: A Term Base Translator Over The Web. Workshop
Proceedings, Arabic Language Processing Status and Prospects. ACL, 10th Conference of
the European Chapter, 2001

14

Strict Deterministic Aspects
of Minimalist Grammars

John T. Hale1 and Edward P. Stabler2

1 Michigan State University,
East Lansing MI 48824-1027, USA

2 University of California, Los Angeles,
Los Angeles CA 90095-1543, USA

Abstract. The Minimalist Grammars (MGs) proposed by Stabler(1997)
have tree-shaped derivations (Harkema, 2001b; Michaelis, 2001a). As in
categorial grammars, each lexical item is an association between a vocab-
ulary element and complex of features, and so the “yields” or “fringes”
of the derivation trees are sequences of these lexical items, and the string
parts of these lexical items are reordered in the course of the derivation.
This paper shows that while the derived string languages can be am-
biguous and non-context-free, the set of yields of the derivation trees is
always context-free and unambiguous. In fact, the derivation yield lan-
guages are strictly deterministic context-free languages, which implies
that they are LR(0), and that the generation of derivation trees from a
yield language string can be computed in linear time. This result sug-
gests that the work of MG parsing consists essentially of guessing the
lexical entries associated with words and empty categories.

1 Introduction

A derivation is a witness to the fact that a string is generated by a grammar. A
derivation says how a string is generated, or, equally, what that string’s analysis
is in terms of the grammar. Derivations are, in this sense, authoritative about a
grammar’s view of a well-formed sentence. From the perspective of a grammar,
a generated string is just one facet of the full story: its derivation.

So for any purpose where the structure of a string matters, it is desirable to
work with the full story, the derivation – or some needed subset of the informa-
tion it encodes. In computational linguistics, such work might involve drawing
pictures of a sentence’s structure, or generating other sentences, for instance, in
other languages. These kinds of applications benefit from the efficient coding of
derivations.

This paper shows that, for a particular grammar formalism, the Minimal-
ist Grammars (Stabler, 1997; Stabler and Keenan, 2003) there exists an en-
coding of derivations that is highly restricted: they can be coded by the se-
quence of lexical entries as it appears along the fringe of any well-formed
derivation tree. This is the same unique readability property familiar from

2005, LNAI 3492, pp. 162–176, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

Strict Deterministic Aspects of Minimalist Grammars 163

the syntax of logical languages (Enderton, 2001, 40,108), (Shoenfield, 1967, 15),
(Ebbinghaus, Flum, and Thomas, 1994, 22). Not only does this lexical sequence
determine the derivation, it is also structured in such a way that such deter-
mination can be carried out in linear time by a shift-reduce automaton. This
kind of operation on lexical sequences is useful for drawing dependency graphs,
X-bar trees annotated with traces, and other kinds of diagrams. The compact
representation provided by lexical sequences could have other uses as well. If
lexical entries contain “semantic” information, such lexical sequences might in-
deed represent meanings, constituting a “logical form” for sentences in mini-
malist languages. These logical forms might be combinable with other (perhaps
real-world) knowledge in a natural language understanding system. Similarly,
such lexical sequences might be useful in a transfer-based machine translation
system.

For all these reasons, and also to gain a deeper understanding of the formalism
itself, the simplicity of MG yield languages is of interest. The main result in this
paper is that for every MG grammar, the language of MG lexical sequences
is a strict deterministic language in the sense of Harrison and Havel (1973)
This property is defined in section 2. Then in section 3, MGs are presented
as an instance of the more general class of “bare grammars” which includes
other formalisms. Section 4 presents a context-free grammar (CFG) for the tree-
shaped MG derivations, and shows how this CFG can always be extended to be
a strict deterministic grammar. Because any strict deterministic grammar is also
an LR(0) grammar in the sense of Kunth (1965), this shows that the language
of MG lexical sequences is an LR(0) language.

2 Definitions

To indicate the relationship of the central result about MGs to more familiar
grammars, it will be helpful to fix some auxiliary definitions. These stipulations
“if, and only if, by definition” are abbreviated by ≡̇ and “equals, by definition”
by .=.

2.1 Trees

At issue most fundamentally are the derivations of linguistic expressions, which
are naturally regarded as trees. A tree is a function t : T → S whose domain
is a finite set of sequences T of the positive integers T ⊂ (N+)∗ such that, for
every n ∈ T :

1. if n = si for some s ∈ (N+)∗, i ∈ N, then s ∈ T ,
‘higher nodes are also in the domain’ and

2. if n = si for some s ∈ (N+)∗, i ∈ N, then if i > 1 and j = i − 1, tj ∈ T
‘lower-numbered sisters are also in the domain’

The elements of a tree domain T are often called nodes; ε is the root node,
and the values of t are often called labels.

164 J.T. Hale and E.P. Stabler

Given any tree t : T → S and any d ∈ T , the subtree of t at d is the function
t/d with domain {u| du ∈ dom(t)}, such that t/d(u) = a if and only if t(du) = a.
In later sections, trees will sometimes be represented with expression which are
sequences of labels, S and parentheses, as follows. By the previous definitions, for
any tree t : T → S, t(ε) = a is the root label and k = |N+ ∩ T | is the number of
daughters the root has, because intersecting the tree domain T with the positive
integers retrieves just the sequences of length 1. When k = 0 the expression of
t is a, and otherwise it is a(t1 . . . tk), where t1, . . . , tk are the expressions of the
subtrees t/1, . . . , t/k. For example, the tree with the conventional depiction here
has the tree domain indicated on the right:

∨

∧

p q

∨

¬

p

q

ε

1

11 12

2

21

211

22

The expression of this tree is ∨(∧(pq) ∨ (¬(p)q)). The yield of this tree, on the
left, is pqpq, where the yield of a tree t : T → S is the sequence of elements of S
defined as follows,

yield(t) =

{
a if dom(t) = {ε}, t(ε) = a

yield(a/1) . . . yield(a/k) otherwise, where k = |N+ ∩ T |.

2.2 Context-Free Grammars

Following Keenan and Stabler (2003), take a context-free grammar (CFG) to
be a triple G = 〈Σ, N, (→)〉 where Σ, N are nonempty and disjoint, the start
symbol S is an element of the nonterminal set N , and (→) ⊆ N × (Σ ∪ N)∗ is
finite. The immediate rewriting relation (→) is to be viewed as an infix operator
so that x → y is a shorthand for 〈x, y〉 ∈ (→). Similarly, the rewriting relation
⇒G

.= {〈x, y〉 ∈ (Σ∪N)∗×(Σ∪N)∗| ∃u, v, w ∈ (Σ∪N)∗, A ∈ N, such that x =
uAv, A → w, x = uwv} on sentential forms is abbreviated as x ⇒ y.

Let ⇒∗ be the reflexive transitive closure of ⇒. For any A ∈ N , the sequences
of category A, LA(G) = {x ∈ Σ∗| A ⇒∗ x}. For any A ∈ N , LA(G) is a context-
free language.

To set the stage for the following more general framework of subsection 3.1,
define the derivation trees Γ (G) of a CFG G as follows, labeling internal nodes
with elements of → rather than with just their left sides:

Γ (G)0 .= {a ∈ Σ∗| A → a},
Γ (G)k+1 .= Γ (G)k ∪ {A → a(a)| A → a and a ∈ (Γ (G)k)∗},
Γ (G) .=

⋃
k∈N

Γ (G)k.

Furthermore, for any A ∈ N ,

ΓA(G) .= {t ∈ Γ (G)| t(ε) = A → a, for some a ∈ (Σ ∪ N)∗}.

Strict Deterministic Aspects of Minimalist Grammars 165

Clearly, yield(ΓA(G)) = LA(G). G has ambiguous yields ≡̇ there are two
distinct trees in Γ (G) with the same yield. Typically, one just says that such a
grammar is “ambiguous.”

2.3 Strict Determinism

Strict determinism is a property that context-free grammars can have; it is a
technical notion that figures prominently in the theory of deterministic context-
free grammars, which is reviewed in (Harrison, 1978, §11). Most simply, a CFG
is strict deterministic if its symbols can be divided up into blocks in a certain
way. The formal definition uses Harrison’s notation (n)α for the prefix of α of
length min{n, |α|}.

For any CFG G, a partition π of N ∪Σ is strict if and only if

i. Σ ∈ π
ii. for any A,A′ ∈ N , α, β, β′ ∈ (N ∪Σ)∗, if A → αβ and A′ → αβ′ and A ≡ A′

(mod π), then either
a. both β, β′ �= ε and (1)β ≡(1) β′ (mod π), or
b. β = β′ = ε and A = A′.

If the partition π is clear from context, A ≡ B (mod π) is sometimes simplified
to A ≡ B, and similarly the block of π where a symbol A resides is written [A]
rather than [A]π if no confusion would result.

With this definition, it is possible to say of a CFG G that it is strict deter-
ministic if there exists a strict partition π of N ∪Σ. A language is strict deter-
ministic if some strict deterministic grammar generates it.

A CFG is said to be reduced with respect to a given start symbol S, abbre-
viated reducedS just in case →= ∅ or for every A ∈ N , S ⇒∗ αAβ ⇒∗ w for
some α, β ∈ (N ∪Σ)∗ and w ∈ Σ∗.

It is also known that

Theorem (Harrison, 11.4.1). Any strict deterministic grammar is equivalent
to a reduced strict deterministic grammar.

Theorem (Harrison, 13.2.3). Any reduced strict deterministic grammar is
also an LR(0) grammar.

These theorems link strict determinism to its consequences for efficient parsing.
Harrison (page 347) explains that

The motivation behind this definition is that we wish to make certain restric-

tions on the simultaneous occurrences of substrings in different productions.

Intuitively, if A → αβ is a production in our grammar, then “partial infor-

mation” about A, together with complete information about a prefix α of αβ,

yields similar partial information about the next symbol of β when β �= ε, or

the complementary information about A when β = ε. In the formal definition,

the intuitive notion of “partial information” is precisely represented by means

of the partition π.

166 J.T. Hale and E.P. Stabler

Loosely speaking, in an automaton processing a strict deterministic grammar,
top-down knowledge of A ≡ A′ buys knowledge of (1)β ≡(1) β′.

The family of all strict deterministic languages is a subfamily of the languages
accepted by deterministic pushdown automata that accept by empty stack in a
final state (Harrison, theorem 11.5.4). In strict deterministic grammars, right-
hand sides of rewriting rules cannot be prefixes of one another.

But if this restriction is relaxed (the qualifier “strict” is dropped), by dis-
tinguishing a special set of prefix-deriving parents, the defined language family
grows to be identical with the one defined by deterministic pushdown automata
that accept in a final state with any stack configuration (Harrison, problem 4
page 392).

2.4 Examples

This section exercises the definitions just given with some CFGs for a simple
language, such as might be used in sentential logic.

Example 1 (Ambiguity). Consider the context-free grammar G1 = 〈Σ, N,→〉,
where
Σ = {p, q, r,¬,∨,∧},
N = {S}, and
→ has the following 6 pairs in it:

S → p S → q S → r
S → ¬S S → S ∨ S S → S ∧ S

This grammar is (yield-)ambiguous since there are the following derivation trees
for ¬p ∧ q:

S → ¬S(¬, S → S ∧ S(S → p(p), S → q(q)))

S → S ∧ S(S → ¬S(¬, S → p(p)), S → q(q))

One can draw graphical presentations that are more readable, like this:

S → ¬S

¬ S → S ∧ S

S → p

p

∧ S → q

q

S → S ∧ S

S → ¬S

¬ S → p

p

∧ S → q

q

These CFG derivation trees are slightly redundant, since the right sides of the
rules at each internal node can be read off the daughters. Eliminating the right
side of each production gives the standard depictions:

Strict Deterministic Aspects of Minimalist Grammars 167

S

¬ S

S

p

∧ S

q

S

S

¬ S

p

∧ S

q

There is only one partition of Σ ∪ N that contains Σ, namely π = {Σ, {N}}.
Evidently, this partition is not strict, because it fails condition (ii) on page 165.
When α = ε, then G1 has, for example β = p and β′ = S. These are both
non-empty, and their first symbols are not in the same block of the partition π.

Example 2 (Unambiguous Polish Notation). Consider the context-free grammar
G2 = 〈Σ, N,→〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S}, and
→ has the following 6 pairs in it:

S → p S → q S → r
S → ¬S S → ∨ S S S → ∧ S S

In G2, the operators ∨ and ∧ have been pushed to the leftmost position in the
right-hand side of each rule. On this grammar, there is just one derivation tree
for ∧¬pq, and just one for ¬ ∧ pq:

S → ¬S(¬, S → ∧SS(∧, S → p(p), S → q(q)))

S → ∧SS(∧, S → ¬S(¬, S → p(p)), S → q(q))

The same, more readable diagrams can be drawn:

S → ¬S

¬ S → ∧SS

∧ S → p

p

S → q

q

S → ∧SS

∧ S → ¬S

¬ S → p

p

S → q

q

The labels on these derivation trees can be shortened to just the left-hand side
of the applied rule, in the same way as with G1:

S

¬ S

∧ S

p

S

q

S

∧ S

¬ S

p

S

q

168 J.T. Hale and E.P. Stabler

There is only one partition of Σ ∪ N that contains Σ, namely π = {Σ, {N}}.
This partition is strict. When α = ε, then no matter which rules we choose,
(1)β ∈ Σ and so the conditions are satisfied. And there are no two different β, β′

and two A,A′ such that for some non-empty α, A → αβ and A′ → αβ′.

To set the stage for later developments, it is worth briefly considering two
further variants of G2.

Example 3 (Unambiguous, But Not Strict Deterministic). Consider the context-
free grammar G2a = 〈Σ, N,→〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S,B}, and
→ has the following 7 pairs in it:

S → p S → q S → r
S → ¬S S → BSS
B → ∧ B → ∨

Clearly, G2a generates the same strings of category S as G2, but G2a is not
strictly deterministic, since the set Σ ∪ N has no strict partition.

Example 4 (Unambiguous, and Strict Deterministic again). Consider the context-
free grammar G2b = 〈Σ, N,→〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S,B,U,A}, and
→ has the following 9 pairs in it:

S → A S → US S → BSS
A → p A → q A → r
U → ¬ B → ∧ B → ∨

Clearly, G2b generates the same strings of category S as G2 and G2a, but
G2b is strictly deterministic, since the set Σ ∪ N has the strict partition
{Σ, {A,U,B}, {S}}.

With these examples clarifying what ambiguity and strict determinism amount
to in CFGs, section 3 turns to the Minimalist Grammars.

3 Grammars

3.1 Bare Grammars

Minimalist Grammars are one of a variety of formalisms that construes a gram-
mar G as a set of basic expressions Lex and a set F of partial functions from
tuples of expressions to expressions (Keenan and Stabler, 2003). The language
L(G) is then the closure of Lex with respect to the functions in F . Internal nodes
in the derivations of G, Γ (G), are labeled with elements of F just in case f ∈ F
is applicable to the children:

Strict Deterministic Aspects of Minimalist Grammars 169

Γ (G)0 .= Lex,
Γ (G)k+1 .= Γ (G)k ∪ {f(a)| f ∈ F and a ∈ ((Γ (G)k)∗ ∩ dom(f))},
Γ (G) .=

⋃
k∈N

Γ (G)k.

Clearly, if f labels the root of some tree in Γ (G), then f is a function expression
whose evaluation returns an element e ∈ L(G). So in these derivation trees, each
node has a value which is the denotation of the function expression which is its
label, always an element of L(G).

Grammar G has ambiguous expressions ≡̇ some expression e ∈ L(G) is
the value of the roots of two distinct trees in Γ (G). Grammar G has ambiguous
yields ≡̇ there are two distinct trees in Γ (G) with the same yield. Notice that
the yields of derivations from bare grammars are sequences from Lex∗.

3.2 Minimalist Grammars

Minimalist Grammars instantiate this general picture, with elements of Lex
comprising the sequences of a quite limited inventory of “features”, along with
two structure-building functions that are constrained in their application. A
Minimalist Grammar G .= 〈Σ, B, Lex,F〉, where

1. Σ is a non-empty set (the pronounced elements)
2. B is a non-empty set of basic features, which serve to specify the features

F
.= B ∪ S ∪ M ∪ N where =,−,+ are 1-1 functions with domain B such

that selectors S
.= {=f | f ∈ B}, licensees M

.= {−f | f ∈ B}, licensors
N

.= {+f | f ∈ B}, and B,S,M,N are pairwise disjoint.
3. The lexicon Lex ⊂ Σ∗ :: F ∗ is a finite, nonempty set of lexical chains,

where the chains C
.= Σ∗TF ∗, and the types T

.= {::, :} distinguish lexical
chains from derived chains, respectively.

4. The generating functions F = {merge,move} are partial functions from tu-
ples of expressions to expressions, where expressions E

.= C+. It will be
convenient to define these functions in a deductive format, with the argu-
ments as premises and the values as the conclusion.

(a) merge : (E × E) → E is the union of the following 3 functions, for
s, t ∈ Σ∗, for · ∈ {:, ::}, for f ∈ B, γ ∈ F ∗, δ ∈ F+, and for chains
α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l)

s :: =fγ t · f, α1, . . . , αk
r1

st : γ, α1, . . . , αk

r1 applies when s is lexi-
cal; it selects its argument
on the right

s : =fγ, α1, . . . , αk t · f, ι1, . . . , ιl
r2

ts : γ, α1, . . . , αk, ι1, . . . , ιl

r2 applies when s is
phrasal and t has no
more features; it se-
lects its argument on
the left

170 J.T. Hale and E.P. Stabler

s · =fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl
r3

s : γ, t : δ, α1, . . . , αk, ι1, . . . , ιl

r3 applies when s is
phrasal and t has more
features; it selects its
argument on the left

Here st is the concatenation of strings s, t. Note that since the domains
of r1, r2, and r3 are disjoint, their union is a function.

(b) move : E → E is the union of the following 2 functions, for s, t ∈ Σ∗,
f ∈ B, γ ∈ F ∗, δ ∈ F+, and for chains α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l) sat-
isfying the following condition: (SMC) none of α1, . . . , αi−1, αi+1, . . . , αk

has −f as its first feature.

s : +fγ, α1, . . . , αi−1, t : −f, αi+1, . . . , αk
m1

ts : γ, α1, . . . , αi−1, αi+1, . . . , αk

m1 when no fea-
tures follow -f

s : +fγ, α1, . . . , αi−1, t : −fδ, αi+1, . . . , αk
m2

s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk

m2 when some
features follow -f

Notice that the domains of m1 and m2 are disjoint, so their union is
a function. The (SMC) restriction on the domain of move is a simple
version of the “shortest move condition” (Chomsky, 1995).

Often, one is interested in a subset of L(G), for instance just the derivations
of complementizer phrases. These derivations are all expressions of a particular
syntactic category. More generally, for any f ∈ B, the expressions of category
f , Lf(G) .= {s · f ∈ L(G)| for some · ∈ {:, ::}}; the strings of category f ,
Sf(G) .= {s| s · f ∈ Lf (G) for some · ∈ {:, ::}}; the derivations of f , Γf (G) .=
{d ∈ Γ (G)| d(ε) ∈ Lf (G)}. A derivation d is complete ≡̇ it is in some Γf (G)
for some f ∈ B. A set L ⊆ Σ∗ is a minimalist language ≡̇ for some MG and
some f ∈ B, Sf (G) = L.

The MG-definable languages are exactly the same as the languages definable
by set-local multicomponent tree adjoining grammars, by multiple context-free
grammars, and other well known grammars (Michaelis, 1998; Michaelis, 2001b;
Harkema, 2001a).

Example 5 (an MG for an ambiguous language). Consider now an MG similar
to the context-free grammar G1, G3 = 〈Σ, N, Lex,F〉, where
Σ = {p, q, r,¬,∨,∧},
N = {S}, and
Lex has the following 6 lexical items built from Σ and N

p :: S q :: S r :: S
¬ :: =S S ∨ :: =S =S S ∧ :: =S =S S

Grammar G3 has ambiguous expressions, since we have the following two
different derivations of ¬p ∧ q:

merge(merge(∧ :: =S=SS, q :: S),merge(¬ :: =SS, p :: S))

merge(¬ :: =SS,merge(merge(∧ :: =S=SS, q :: S), p :: S))

Strict Deterministic Aspects of Minimalist Grammars 171

A graphical presentation can be provided which, instead of marking all the in-
ternal nodes with the uninformative symbol merge, labels them with the values
of merge:

¬p ∧ q : S

∧q : =S S

∧ :: =S =S S q :: S

¬p : S

¬ :: =S S p :: S

¬p ∧ q : S

¬ :: =S S p ∧ q : S

∧q : =S S

∧ :: =S=SS q :: S

p :: S

These derivations correspond to the X-bar structures given below:

SP

SP

S’

S

¬
SP

S’

S

p

S’

S

∧
SP

S’

S

q

SP

S’

S

¬
SP

SP

S’

S

p

S’

S

∧
SP

S’

S

q

While these examples show that G3 has ambiguous expressions, they do not show
that G3 has ambiguous yields. Notice that the yields of the two simple derivation
trees shown above (not the X-bar structures, but the derivation trees) are not
the same. The two yields are, respectively,

∧ :: =S=SS q :: S ¬ :: =SS p :: S

¬ :: =SS ∧ :: =S=SS q :: S p :: S

In fact, G3 derivations have unambiguous yields. That is, each sequence of lexical
items is the yield of at most one derivation. However, while these sequences of
lexical items determine their derivations, the corresponding multisets do not,
as can be seen in this example from the fact that exchanging the positions of
lexical items p and q, gives two new derivations which, respectively have the
same multisets of lexical items as the two derivations shown above. These latter
two derivations derive the string ¬q ∧ p.

The suggestion is that extra information contained in the leaves – thrown
away when the structure building function merge is evaluated – is enough to fully
determine the derivation. This suggestion is amplified into a general procedure
in section 4.

172 J.T. Hale and E.P. Stabler

4 Strict Deterministic Grammars for MG Derivations

This section first gives the “natural” CFG for MG derivation tree fringes, adapt-
ing some basic ideas from Michaelis (1998). The CFGs obtained this way (sub-
section 4.1) are not, in general, strict deterministic, but subsection 4.2 shows
how they can always be extended so as to become so. The argument then is
that, because a strict deterministic grammar for the derivation tree fringe lan-
guage exists, the language is strict deterministic, hence LR(0), hence uniquely
readable.

4.1 The Natural Translation

Perhaps the most natural view of MG derivations as generated by CFGs simply
ignores the string-manipulation parts of the structure-building functions. Ab-
breviate by numerical subscripting i the set of ith projections of each element
in a set of n-tuples, i ≤ n. Then for any MG G = 〈Σ, B, Lex, {merge,move}〉,
define

R(Lex) .= {Fs → S :: Fs| S :: Fs ∈ Lex},
R(G) .= closure(R(Lex), {rmerge, rmove})
h(G) .= 〈Σ′, Cat,→〉 where Σ′ = Lex,Cat = R(G)1, and →= R(G).

The functions rmerge, rmove are the obvious modifications of merge,move. To
obtain the CFG, simply eliminate the string components everywhere except at
the leaves. So instead of chains C with string components, the cchains CC

.= F ∗

are just feature sequences, and the possible rules R
.= CC+×(Lex∪CC+). To

generate the needed context-free rules, rmerge : (R×R) → R is the union of the
following 3 functions, for f ∈ B, γ ∈ F ∗, δ ∈ F+, for cchains α1, . . . , αk, ι1, . . . , ιl
(0 ≤ k, l), for non-lexical right sides N ∈ CC+, and for arbitrary right sides
M,L ∈ (Lex ∪ CC+)

=fγ → s :: =fγ f, α1, . . . , αk → M
rr1

γ, α1, . . . , αk → =fγ f, α1, . . . , αk

=fγ, α1, . . . , αk → N f, ι1, . . . , ιl → M
rr2

γ, α1, . . . , αk, ι1, . . . , ιl → =fγ, α1, . . . , αk f, ι1, . . . , ιl

=fγ, α1, . . . , αk → M fδ, ι1, . . . , ιl → L
rr3

γ, t : δ, α1, . . . , αk, ι1, . . . , ιl → =fγ, α1, . . . , αk fδ, ι1, . . . , ιl

Note that since the domains of rr1, rr2, and rr3 are disjoint, their union is a
function.

Strict Deterministic Aspects of Minimalist Grammars 173

Similarly, rmove : R → R is the union of the following 2 functions:

+fγ, α1, . . . , αi−1,−f, αi+1, . . . , αk → N
rm1

γ, α1, . . . , αi−1, αi+1, . . . , αk → +fγ, α1, . . . , αi−1,−f, αi+1, . . . , αk

+fγ, α1, . . . , αi−1,−fδ, αi+1, . . . , αk → N
rm2

γ, α1, . . . , αi−1, δ, αi+1, . . . , αk → +fγ, α1, . . . , αi−1,−fδ, αi+1, . . . , αk

Notice several facts about the translation h.

Theorem (Michaelis, Harkema). R(G) is finite.

Because of R(G)’s finitude, h is well-defined.

Theorem (h-Correctness). For every MG G, s ∈ yield(Γf (G)) if and only if
s ∈ Lf (h(G)).

Proof idea: this is established with an easy induction on derivation lengths, since
the context-free rules rr and rm correspond to every possible application of merge
and move.

Theorem 1 (Non-left-recursive). For every MG G, h(G) is not left recursive.

Proof idea: This is easy to see, since the label of any left daughter of any node
in any derivation is always strictly larger than its parent. In the case of merge,
it is one feature larger; in the case of move, it is two features larger.

Examples 6 and 7 show how the range of this translation is not restricted to
strict deterministic CFGs. However, subsection 4.2 illustrates another translation
g that is restricted in this way.

Example 6 (h(G3) is not strictly deterministic). Consider grammar G3 from page
170. The CFG h(G3) = 〈Σ, N,→〉 where Σ = Lex, N = {S, =SS, =S=SS}, and
→ is the following 8 pairs:

S → =SS S S → p :: S S → q :: S S → r :: S
=SS → =S=SS S =SS → ¬ :: =SS
=S=SS → ∧ :: =S=SS =S=SS → ∨ :: =S=SS

Notice that 6 of the 8 pairs are lexical. Also, it is clear that Σ ∪N has no strict
partition. Notice, in particular, that the category =SS can rewrite as a lexical
item or as a pair of nonterminals.

Example 7 (h(G3)a ≡ h(G3) and h(G3)a is strictly deterministic). Let h(G3)a .=
〈Σ, N,→〉 where Σ = Lex, N = {1=SS , 2=SS , 1=S=SS , S, =SS, =S=SS}, and →
is the following 11 pairs:

174 J.T. Hale and E.P. Stabler

S → =SS S S → 2=SS

2=SS → 1=SS 1=SS → p :: S 1=SS → q :: S 1=SS → r :: S
=SS → =S=SS S =SS → 1=S=SS

1=S=SS → ¬ :: =SS
=S=SS → ∧ :: =S=SS =S=SS → ∨ :: =S=SS

Clearly LS(h(G3)) = LS(h(G3)a), but now Σ ∪ N has a strict partition:

{{S}, {=SS, 2=SS}, {=S=SS, 1=S=SS , 1=SS},Σ}.

4.2 Extending the Natural Translation

The step from h(G3) to h(G3)a can be generalized to show that, for any MG G
the grammar h(G) generates an LR(0) language. This is shown using another
language-preserving map g on the grammars h(G) whose range includes only
strict deterministic CFGs.

Given h(G) = 〈Σ, N,→〉, for any A ∈ N , sequence (A1A2 . . .An) ∈ N+ is a
left branch of A if and only if the following three conditions hold:

1. A = A1

2. for all 1 ≤ i < n, either Ai → Ai+1 or Ai → Ai+1B for some B ∈ N , and
3. An → a for some a ∈ Σ

When A → a for a ∈ Σ, the empty sequence ε is a left branch of A.
As observed earlier (theorem 1), for any MG G h(G) is never left recursive.

Since there are no infinite left-recursive branches, one can define a ranking func-
tion rank : (N ∪ Lex) → N so that for a ∈ Σ, rank(a) = 0 and for A ∈ N ,
rank(A) is the length of the longest left branch of A.

Example 8. In h(G3), notice that rank(S) = 3, rank(=SS) = 2, and
rank(=S=SS) = 1.

Now g can be defined directly on MGs using h. Observe that all rules p ∈ h(G)
are of the form p = A → a or p = A → BC or p = A → B. Define a function
pad by cases that maps each such rule to a set of pairs as follows:

p = A → a:
If rank(A) = 1, then pad(p) = {p}. Else we add padded categories from
rank(A) down to 1 as follows:

pad(p) = {A → (rank(A)−1)A, (rank(A)−1)A → (rank(A)−2)A, . . . , 1A → a}.

p = A → BC:
If rank(B) = rank(A)−1, then pad(p) = {p}. Else we add padded categories
from rank(A) down to rank(B) as follows:

Strict Deterministic Aspects of Minimalist Grammars 175

pad(p) = { A → (rank(A) − 1)BC, (rank(A) − 1)B → (rank(A) − 2)B ,
. . . , rank(B)B → B}.

p = A → B: pad(p) is defined similarly.

The new rule set R′(G) is defined to be
⋃

r∈(→) pad(r), and for any MG G, the
context-free grammar g(G) .= 〈Σ, R′(G)1, R′(G)〉.

Theorem (g-Correctness). For every MG G, h(G) = 〈Σ, N,→〉 and g(G) =
〈Σ, N ′,→′〉, and any A ∈ N , LA(h(G)) = LA(g(G)).

Proof: From the definition of g, we have immediately that N ⊆ N ′ and a simple
induction shows, using the definition of pad, that the same sets of terminal
strings are derivable. �

The ranking of nonterminals by their longest left branch induces a partition.
For each x ∈ (N ∪Σ), [x] .= {y ∈ (N ∪Σ)| rank(y) = rank(x)}. Since there is
a unique maximum left branch length for every nonterminal, the [x] are disjoint
and since every nonterminal has a maximum left branch length, the [x] are
exhaustive.

Theorem 2 (Strict Determinism of MG derivation languages). For any
MG G, g(G) = 〈Σ, N,→〉, the set

π = {[x]| x ∈ (N ∪Σ)}

is a strict partition of N ∪Σ.

Proof. Referring again to the definition of strict partitions (2.3) on page 165,
each condition is satisfied by construction:

1. Σ ∈ π since by the definition of rank, Σ = [a] for all a ∈ Σ.
2. For α = ε, it follows from the definition of pad that rules with equivalent left

sides have equivalent first symbols on their right sides.
And there are no two different β, β′ and two A,A′ such that for some non-
empty α, A → αβ and A′ → αβ′. �

5 Conclusion

In showing that the derivation tree fringes of MGs are strict deterministic, it has
been important to keep in mind the difference between having (un)ambiguous ex-
pressions – i.e. that the string languages are unambiguous, which is certainly
false for MGs – and having (un)ambiguous yields – i.e. that the language of lex-
ical entry sequences is unambiguous. This latter point is the one demonstrated
in this paper. Because strict determinism implies LR(0), shift-reduce automata
can quickly assemble a sequence of lexical entries into a tree, dependency graph
or other representation, after chart-parsing or some other method has disam-
biguated a grammatical string into the correct sequence of lexical entries.

176 J.T. Hale and E.P. Stabler

References

Chomsky, Noam. 1995. The Minimalist Program. MIT Press, Cambridge, Mas-
sachusetts.

Ebbinghaus, Heinz-Dieter, Jörg Flum, and Wolfgang Thomas. 1994. Mathematical
Logic. Springer-Verlag.

Enderton, Herbert B. 2001. A Mathematical Introduction to Logic. Harcourt.
Harkema, Henk. 2001a. A characterization of minimalist languages. In Proceedings,

Logical Aspects of Computational Linguistics, LACL’01, Port-aux-Rocs, Le Croisic,
France.

Harkema, Henk. 2001b. Parsing Minimalist Grammars. Ph.D. thesis, UCLA.
Harrison, Michael A. 1978. Introduction to Formal Language Theory. Addison-Wesley,

Reading, Massachusetts.
Harrison, Michael A. and Ivan M. Havel. 1973. Strict deterministic grammars. Journal

of Computer and System Sciences, 7:237–277.
Keenan, Edward L. and Edward P. Stabler. 2003. Bare Grammar: Lectures on Lin-

guistic Invariants. Stanford Monographs in Linguistics. CSLI Publications.
Knuth, Donald. 1965. On the translation of languages from left to right. Information

and Control, 8(6):607–639.
Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. In Pro-

ceedings, Logical Aspects of Computational Linguistics, LACL’98, Grenoble.
Michaelis, Jens. 2001a. On Formal Properties of Minimalist Grammars. Ph.D. thesis,

Potsdam University.
Michaelis, Jens. 2001b. Transforming linear context free rewriting systems into min-

imalist grammars. In Proceedings, Logical Aspects of Computational Linguistics,
LACL’01, Le Croisic, France.

Shoenfield, Joseph R. 1967. Mathematical Logic. Addison-Wesley.
Stabler, Edward and Edward Keenan. 2003. Structural similarity. Theoretical Com-

puter Science, 293:345–363.
Stabler, Edward P. 1997. Derivational minimalism. In Christian Retoré, editor, Logical

Aspects of Computational Linguistics, pages 68–95. Springer.

A Polynomial Time Extension of
Parallel Multiple Context-Free Grammar

Peter Ljunglöf

Department of Computing Science,
Göteborg University and Chalmers University of Technology,

SE-412 96 Göteborg, Sweden
peb@cs.chalmers.se

Abstract. It is already known that parallel multiple context-free gram-
mar (PMCFG) [1] is an instance of the equivalent formalisms simple lit-
eral movement grammar (sLMG) [2, 3] and range concatenation grammar
(RCG) [4, 5]. In this paper we show that by adding the single operation of
intersection, borrowed from conjunctive grammar [6], PMCFG becomes
equivalent to sLMG and RCG. As a corollary we get that PMCFG with
intersection describe exactly the class of languages recognizable in poly-
nomial time.

The layout of this paper is as follows. The first section contains definitions of the
basic grammar formalisms we are interested in. The second section introduces the
intersection operation for PMCFG. The third section contains the main result of
the paper – that PMCFG extended with the intersection operation is equivalent
to simple LMG and RCG. The fourth and last section is a small discussion of
the results.

1 GCFG, PMCFG, sLMG and RCG

1.1 Generalized Context-Free Grammar

Generalized context-free grammar (GCFG) was introduced by Pollard in the 80’s
as a way of formally describing head grammar [7]. There are several definitions
of GCFG in the literature; Seki et al [1] use a definition similar to Pollard’s orig-
inal, while others [8, 9, 10] more cleanly separates between abstract and concrete
syntax. However, the latter definitions use the term GCFG for only the abstract
part of the grammar, and the term context-free rewriting system for the abstract
grammar together with the concrete interpretation function. While Pollard im-
posed no restriction on the concrete linearization type, other definitions restrict
them to be tuples of strings. Here we use the definition from [11], which is close
to the original definition.

Definition 1 (GCFG, abstract part). The abstract grammar of a GCFG is
a tuple (C, S,F ,R), where C and F are finite sets of categories and function
symbols respectively, S ∈ C is the starting category, and R ⊆ C × F × C∗ is a

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 177–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

178 P. Ljunglöf

finite set of context-free syntax rules. For each function symbol f ∈ F there is
an associated context-free syntax rule:

A → f [B1, . . . , Bδ]

The arity of the rule is δ, and in general we write δf for the arity of the
rule f . The tree rewriting relation t : A is defined as f(t1, . . . , tδ) : A whenever
t1 : B1, . . . , tδ : Bδ. We say that a tree t is valid (for a given category A) if t : A.

Example 1. The abstract grammar of a simple fragment of English might look
like the following,

S → sp[NP, VP]
S → st[NP, VP]

VP → vp[V, NP]
NP → np[D, N]
D → some[]
D → most []
N → cat []

NP → fish[]
V → eat []
V → catch[]

The idea is that the grammar should be able to handle both normal word order
(‘most cats eat fish’), and topicalized sentences (‘it is fish that most cats eat ’).

Definition 2 (GCFG, concrete part). To each category A is associated a
linearization type A◦, which is not further specified. To each function symbol f
is associated a partial linearization function f◦, taking as many arguments as
the abstract syntax rule specifies:

f◦ ∈ B◦
1 × · · · × B◦

δ → A◦

The linearization [[·]] of syntax trees is defined as,

[[f(t1, . . . , tδ)]] = f◦([[t1]], . . . , [[tδ]])

if the application is defined. Note that the definition imposes no restrictions on
the linearization types or the linearization functions; this is left to the actual
grammar formalism. For our purposes it is enough to view a linearization type
as the set of all its possible linearization values.

To be able to define the language of a grammar as a set of strings, we demand
that the linearization type of the starting category is S◦ = Σ∗. The language of
a grammar G then becomes:

L(G) = { [[t]] | t : S }

A Polynomial Time Extension of Parallel Multiple Context-Free Grammar 179

1.2 Parallel Multiple Context-Free Grammar

Parallel multiple context-free grammar (PMCFG) [1, 12] were introduced in the
late 80’s by Kasami, Seki et al. as a very expressive formalism, incorporating lin-
ear context-free rewriting systems and other mildly context-sensitive formalisms,
but still with a polynomial parsing algorithm.

Definition 3 (PMCFG). PMCFG is an instance of GCFG, with the following
restrictions on linearizations:

– Linearization types are restricted to tuples of strings. In other words, each
PMCFG grammar defines a linearization arity d(C) for each category C.
The linearization types can then be defined as C◦ = (Σ∗)d(C).

– The only allowed operations in linearization functions are tuple projections
and string concatenations. In other words, each PMCFG linearization func-
tion is of the form,

f◦ (〈x1,1, . . . , x1,d1〉 , . . . , 〈xδ,1, . . . , xδ,dδ
〉) = 〈α1, . . . , αd〉

where each αi is a sequence of variables xj,k and constant strings.

Example 2. The concrete syntax of the example English grammar might look
like follows:

s◦p (x, 〈y1, y2〉) = x y1 y2

s◦t (x, 〈y1, y2〉) = ‘it is’ y2 ‘that ’ x y1

vp◦(x, y) = 〈x, y〉
np◦(x, y) = x y

most◦ = ‘most ’
cat◦ = ‘cats’
fish◦ = ‘fish’
eat◦ = ‘eat ’

catch◦ = ‘catch’

Note that verb phrases have to consist of two discontiuous phrases, for the top-
icalization to function.1

1.3 Subclasses of PMCFG

A PMCFG where each variable xi,j occurs in its linearization is called noneras-
ing. If no variable xj,k occurs twice in a linearization the grammar is called a
linear MCFG (LMCFG or just MCFG). A nonerasing and linear grammar (i.e. if
each variable occurs exactly once in its linearization), is called a linear context-
free rewriting system (LCFRS). The following lemma states that LMCFG and
LCFRS are equivalent formalisms [1]:

1 If the example seems strange, there are other languages (such as German or Swedish)
where discontinuous verb phrases are more natural.

180 P. Ljunglöf

Lemma 1. Any PMCFG grammar can be converted into an equivalent noneras-
ing grammar. Furthermore, linearity is preserved by the conversion.

1.4 Literal Movement Grammar and Range Concatenation
Grammar

Literal movement grammar (LMG; [2, 3]), and its relative range concatenation
grammar (RCG; [4, 5]), are grammar formalisms based on predicates over string
tuples. A grammar is a collection of clauses for predicates, very similar to Horn
clauses and the programming language Prolog. We here define the general for-
malism of LMG, and then two equivalent subclasses, RCG and simple LMG
(sLMG). We assume given a finite set Σ of terminal tokens, and an infinite
supply of logical variables x1, x2, . . . ∈ Var.

Definition 4 (predicate). A predicate is a term A(α1, . . . , αn), where each
αi ∈ (Σ ∪ Var)∗ is a concatenative sequence of terminals and logical variables.

Definition 5 (clause). A clause is of the form φ � ψ1, . . . , ψm where each
of φ, ψ1, . . . , ψm are predicates. A clause can be instantiated by substituting a
string for each variable in the clause.

A literal movement grammar consists a finite number of clauses together with
a designated start predicate. To define the language of a lmg grammar G, we
define a rewriting relation ⇒G on sequences of instantiated predicates,

Γ1, φ, Γ2 ⇒G Γ1, ψ1, . . . , ψm, Γ2

whenever φ � ψ1, . . . , ψm is an instantiation of a clause in G. The language of
a grammar is then,

L(G) = { w ∈ Σ∗ | S(w) ⇒∗
G ε }

where S is the start predicate in G.

Example 3. The example grammar looks like follows in LMG format:

S(x y1 y2) � NP(x), VP(y1, y2)
S(‘it is’ y2 ‘that ’ x y1) � NP(x), VP(y1, y2)

VP(x, y) � V(x), NP(y)
NP(x y) � D(x), N(y)

D(‘most ’) � ε

N(‘cats’) � ε

NP(‘fish’) � ε

V(‘eat ’) � ε

V(‘catch’) � ε

A possible instantiation of the second clause is:

S(‘it is fish that most cats eat ’) � NP(‘most cats’), VP(‘eat ’, ‘fish’)

A Polynomial Time Extension of Parallel Multiple Context-Free Grammar 181

LMG is a very general, Turing-complete, grammar formalism. To get a recogniz-
able subclass of LMG, one can consider two possibilities; to restrict the definition
of clause instantiation, or to put syntactic restrictions on the form of the predi-
cates.

Definition 6 (RCG). A range concatenation grammar (RCG) is an LMG with
a restricted form of clause instantiation. A clause can only be instantiated by
substrings of the given input string; i.e. if φ � ψ1, . . . , ψm is an instantiation of
a clause, then all arguments to φ, ψ1, . . . , ψm are substrings of the input.

By only allowing instantiations by substrings of the input we assure that all
strings in a RCG can be replaced by pairs of input positions, called ranges.2

This has the effect that RCG parsing is polynomial in the length of the input
string.

Example 4. If the input string is ‘b a c h’, then for the following clauses,

A(bac) � B(b), C(c)
A(bach) � B(b), C(ch)
A(back) � B(b), C(ck)

the first two are RCG instantiations of the clause A(x a z) � B(x), C(z); but
not the third.

Definition 7 (sLMG). A simple LMG (sLMG) is an LMG where each clause
obeys the following three syntactic restrictions:

– Non-combinatorial (NC): The arguments of each ψi are variables.
– Bottom-up nonerasing (BNE): All variables in each ψi also occur in φ.
– Bottom-up linear (BL): No variable occurs more than once in φ.

Strictly speaking, bottom-up linearity is not a necessary condition, as the fol-
lowing lemma states:

Lemma 2. Any LMG clause can be converted to an equivalent bottom-up linear
(BL) clause. Furthermore, the conversion preserves NC and BNE.

Proof (taken from [2, 3]). Assume that the clause in question is φ � ψ1, . . . , ψm,
and that there is a variable x occurring twice in φ. Replace one occurrence by a
new variable x′, and add a call to the bottom-up linear predicate Eq(x, x′), with
the following definition:

Eq(ε, ε) � ε

Eq(s x, s y) � Eq(x, y) (for each s ∈ Σ)

The new clause φ � ψ1, . . . , ψm, Eq(x, x′) is equivalent to the original, since the
predicate call Eq(x, x′) says that x and x′ are equal strings.

2 Boullier [4, 5] defines RCG directly on ranges, but our definition is equivalent.

182 P. Ljunglöf

The conversion preserves NC, since the predicate Eq(x, x′) is non-combina-
torial. Furthermore, is preserves BNE, since the only variable that is introduced
on the left-hand side (x′) is also introduced on the right-hand side. ()

Both formalisms sLMG and RCG are equivalent, since they describe exactly
the class of languages recognizable in polynomial time [2, 3, 4, 5, 13]. Note that
sLMG/RCG are closed under intersection; if S1 and S2 are the start predicates
of G1 and G2, then S(x) � S1(x), S2(x) defines the intersection of the languages
L(G1) and L(G2).

1.5 PMCFG Is an Instance of sLMG/RCG

Assume given the following PMCFG rule:

A → f [B1, . . . , Bδ]
f◦(x1,1, . . . , x1,n1 ;

. . . ;
xδ,1, . . . , xδ,nδ

) = α1, . . . , αn

By lemma 1, we can assume that the linearization is nonerasing. Furthermore, it
is straightforward to convert a nonerasing PMCFG grammar into an equivalent
sLMG grammar, as shown in [2, 3]. Each rule above is converted to the clause:

A(α1, . . . , αn) � B1(x1,1, . . . , x1,n1),
. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

Note that this clause is NC (since each of the xi,j is a variable) and BNE (since
f◦ is nonerasing), and therefore the clause is sLMG.

2 The Intersection Operation

There is an extension of context-free grammar called conjunctive grammar [6],
where the right-hand sides of rules are extended with a new intersection operator.
A conjunctive context-free rule is written:

A → α1 & . . . &αn

where αi ∈ (N ∪ Σ)∗. The informal interpretation is that A can be rewritten
to w ∈ Σ∗ iff all αi can be rewritten to w. This operation can be directly
transformed to PMCFG linearizations.

Definition 8 (intersection). The intersection operation is a partial lineariza-
tion operation with the definition; φ1 &φ2 is calculated to φ1 iff φ1 = φ2.

This definition can be made formal by lifting the linearization types to sets of
linearization values; where the unit set denotes the existence of a linearization

A Polynomial Time Extension of Parallel Multiple Context-Free Grammar 183

and the empty set denotes an undefined linearization. String concatenation, tuple
forming and tuple projection are straightforwardly lifted to this domain. The
definition of the intersection operation then simply becomes set intersection.

We call PMCFG extended with the intersection operation conjunctive PM-
CFG. The following laws for intersections of linearizations are simple conse-
quences of the formal definition:

φ&φ = φ

α (β1 &β2) γ = (α β1 γ) & (α β2 γ)

The second law says that we can push out an intersection to a row, which is used
in the equivalence proof later.

Example 5. In our running example, we have introduced discontinuous verb
phrases to handle topicalization. Groenink [2, 3] suggests to handle verb phrase
coordination by using conjunction on the verb component of the verb phrase. In
PMCFG format, this looks like follows:

VP → coord [VP, VP]
coord◦(〈x1, x2〉 , 〈y1, y2〉) = 〈x1 ‘and ’ y1, x2 & y2〉

By combining two verb phrases with the same object, we can form a coordinated
verb phrase:

coord◦(〈‘catch’, ‘fish’〉 , 〈‘eat ’, ‘fish’〉) = 〈‘catch and eat ’, ‘fish’〉

which in turn can be used to form sentences like ‘many cats catch and eat fish’,
or the topicalized version ‘it is fish that many cats catch and eat ’.

2.1 A Strict Extension of PMCFG

Theorem 1. The class of languages recognized by conjunctive PMCFG gram-
mars is closed under intersection.

Proof. Let G1 and G2 be two grammars (with no common categories or function
symbols) recognizing the languages L(G1) and L(G2) respectively. Let G contain
all rules from G1 and G2 plus the following single rule for the new starting
category S:

S → f [S1, S2]
f◦(x, y) = x& y

It is trivial to see that G recognizes all and only those strings that are recognized
by both G1 and G2. ()

Corollary 1. The intersection operation is a strict extension of PMCFG.

The corollary follows from the fact that PMCFG is not closed under intersection
[1], a property it shares with context-free grammars.

184 P. Ljunglöf

2.2 Language-Theoretic Implications

Closedness under intersection has some less desirable properties, which conjunc-
tive PMCFG inherits from conjunctive grammar [6]:

– The following decision problems are undecidable: emptiness, finiteness, reg-
ularity, context-freeness, inclusion and equivalence. This is because these de-
cision problems are undecidable for finite intersections of context-free gram-
mars, see e.g. [14].

– Conjunctive PMCFG is not closed under homomorphism. This follows from
the fact that any recursively enumerable language L can be described by
h(L1 ∩ L2), for some homomorphism h and context-free languages L1, L2,
see e.g. [15].

2.3 Usefulness of Intersection

Conjunctive PMCFG is not only closed under intersection, but the closure is
also modular, i.e. it preserves the structure of the underlying grammar conjuncts.
This makes it useful for modular grammar engineering, as already noted in [4,
5]. Intersection might also be useful for modeling secondary/tertiary structures
of biological sequences, as has been investigated in [16]. For purely linguistic
phenomena, [2, 3] contains a suggestion of how to use intersection to describe
verb coordination, as shown in example 5.

3 Conjunctive PMCFG Describes the Polynomial
Languages

In this section we show that conjunctive PMCFG, or to be more exact, non-
erasing conjunctive PMCFG, is equivalent to sLMG and RCG. The following
theorem is a direct consequence of lemmas 3, 4 and 5 below:

Theorem 2. Nonerasing conjunctive PMCFG is equivalent to sLMG and RCG.

Since it is already known that sLMG and RCG exactly describe the class of
languages recognizable in polynomial time, we get the same result for nonerasing
PMCFG extended with intersection.

Corollary 2. The class of languages recognizable by nonerasing conjunctive PM-
CFG is exactly the class of languages recognizable in polynomial time.

3.1 Conjunctive PMCFG Is an Instance of sLMG/RCG

Lemma 3. Any nonerasing conjunctive PMCFG can be converted to an equiv-
alent sLMG.

A Polynomial Time Extension of Parallel Multiple Context-Free Grammar 185

Proof. Since intersections can be pushed out, we can assume that the PMCFG
rules are of the form,

A → f [B1, . . . , Bδ]
f◦(〈x1,1, . . . , x1,n1〉 ,

. . . ,

〈xδ,1, . . . , xδ,nδ
〉) = 〈α1,1 & . . . &α1,c1 ,

. . . ,

αn,1 & . . . &αn,cn
〉

where each αi,j is a sequence of strings and variables, as above. Translate this
to the sLMG clause,

Â(α1,1 & . . . &α1,c1 ;
. . . ;

αn,1 & . . . &αn,cn
) � B1(x1,1, . . . , x1,n1),

. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

where the left-hand side is just syntactic sugar for a predicate with arity c1 +
· · · + cn. The clause is NC (since each of the xi,j is a variable) and BNE (since
f◦ is nonerasing), and therefore it is sLMG. Finally, add coercion clauses for
Â(. . .), implementing the intersections:

A(x1, . . . , xn) � Â(x1 & . . . &x1 ; . . . ; xn & . . . &xn)

The resulting sLMG grammar is equivalent to the original PMCFG grammar.
()

Example 6. The following is the result of translating the PMCFG rule for verb
coordination in example 5, into sLMG/RCG:

V̂P(x1 ‘and ’ y1 ; x2 & y2) � VP(x1, x2), VP(y1, y2)

VP(x, y) � V̂P(x ; y & y)

After simplifying away V̂P, we get the same clause as in Groenink’s original
example [2, 3]:

VP(x ‘and ’ y, z) � VP(x, z), VP(y, z)

3.2 sLMG/RCG is an Instance of Conjunctive PMCFG

We say that a clause φ � ψ1, . . . , ψm is top-down nonerasing (TNE) if all vari-
ables in φ also occur in some ψi.

Lemma 4. Any LMG clause can be converted to an equivalent top-down non-
erasing (TNE) clause. Furthermore, the conversion preserves NC and BNE.

186 P. Ljunglöf

Proof. Assume that the clause in question is φ � ψ1, . . . , ψm, and that there is
a variable x in φ not occurring in any of ψ1, . . . , ψm. Add a call to the top-down
nonerasing predicate Str(x), with the following definition:

Str(ε) � ε

Str(s x) � Str(x) (for each s ∈ Σ)

The new clause φ � ψ1, . . . , ψm, Str(x) is equivalent to the original, since the
predicate Str(x) only says that x is a string.

The conversion preserves NC, since the predicate Str(x) is non-combinatorial.
Furthermore, it preserves BNE, since no variable is introduced. ()

Lemma 5. Any top-down nonerasing sLMG can be converted to an equivalent
nonerasing conjunctive PMCFG.

Proof. A sLMG clause is of the following form:

A(α1, . . . , αn) � B1(x1,1, . . . , x1,n1),
. . . ,

Bδ(xδ,1, . . . , xδ,nδ
)

If the variables xi,j all are distinct, it is equivalent to the PMCFG rule:

A → f [B1, . . . , Bδ]
f◦(〈x1,1, . . . , x1,n1〉 ,

. . . ,

〈xδ,1, . . . , xδ,nδ
〉) = 〈α1, . . . , αn〉

However, in sLMG, the variables in the right-hand side of a clause need not be
distinct. Assume therefore that xi′,j′ = xi,j = x. Now, introduce a new variable
x′ to replace x as xi′,j′ ; and replace each occurrence of x in the right-hand side
with the conjunction (x&x′).

The resulting rule is a syntactically correct conjunctive PMCFG rule, and
equivalent to the given sLMG clause. Furthermore, it is nonerasing since the
original clause is TNE. ()

Example 7. The resulting clause from the previous example,

VP(x ‘and ’ y, z) � VP(x, z), VP(y, z)

is converted to the following conjunctive PMCFG rule:

VP → f [VP, VP]
f◦(〈x, z〉 , 〈y, z′〉) = 〈x ‘and ’ y, z& z′〉

A Polynomial Time Extension of Parallel Multiple Context-Free Grammar 187

4 Discussion

The results in this and earlier papers [1, 2, 3, 4, 5, 11, 17] give some insights into
the nature of the class of polynomial time recognizable languages. We can now
try to describe what kind of constructions are necessary (and sufficient) to be
able to describe any polynomial language, apart from ordinary string concate-
nation.

Multiple Constituents. Parse time complexity is directly related to the maxi-
mal number of discontinuous constitutents in a grammar [2, 3, 4, 5, 11, 17]. There-
fore there should be some way of coding discontinuous constitutents in a gram-
mar, be it with string tuples as in the formalisms discussed in this paper, or with
some kind of ingenious coding.

Reduplication. The exponentially growing language a2n

is polynomially recog-
nizable, and we see no other (simple) way of describing that language but to use
string duplication – there can only be a finite number of multiple constituents
in a grammar, and an intersection cannot be used to duplicate strings.

Intersection. As noted by Boullier [4, 5], the intersection of two polynomially
parsable languages is also polynomially parsable – simply recognize for each lan-
guage in turn. And since formalisms with multiple constituents and reduplication
(e.g. PMCFG) are not closed under intersection, we have to introduce intersec-
tion as an explicit operation.

Suppose we design a new grammar formalism having some construction which
cannot be decomposed into these constructions. Then our conjecture is that the
formalism cannot be parsable in polynomial time.

One such construction which we have already come across is erasing PMCFG
grammars – the possibility to erase linearization information of parts of the
syntax tree, as discussed in section 1.3. Without the intersection operation, any
erasing grammar can be transformed into an equivalent nonerasing grammar.
But for conjunctive PMCFG, it is not clear whether erasing syntax rules can be
transformed away. Either it is possible, in which case any conjunctive PMCFG
is polynomially parsable; or it is not possible, in which case conjunctive PMCFG
is not polynomial in general.

References

1. Seki, H., Matsumara, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88 (1991) 191–229

2. Groenink, A.: Mild context-sensitivity and tuple-based generalizations of context-
free grammar. Linguistics and Philosophy 20 (1997) 607–636

3. Groenink, A.: Surface without Structure — Word order and tractability issues in
natural language analysis. PhD thesis, Utrecht University (1997)

4. Boullier, P.: A cubic-time extension of context-free grammars. Grammars 3 (2000)
111–131

188 P. Ljunglöf

5. Boullier, P.: Range concatenation grammars. In: 6th International Workshop on
Parsing Technologies, Trento, Italy (2000) 53–64

6. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6 (2001) 519–535

7. Pollard, C.: Generalised Phrase Structure Grammars, Head Grammars and Natural
Language. PhD thesis, Stanford University (1984)

8. Weir, D.: Characterizing Mildly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania, Philadelphia, PA (1988)

9. Becker, T.: HyTAG: A New Type of Tree Adjoining Grammars. PhD thesis,
Universität des Saarlandes (1994)

10. Chiang, D.: Constraints on strong generative power. In: 39th Meeting of the
Association for Computational Linguistics. (2001) 124–131

11. Ljunglöf, P.: Expressivity and Complexity of the Grammatical Framework. PhD
thesis, Göteborg University (2004)

12. Kasami, T., Seki, H., Fujii, M.: Generalized context-free grammars and multiple
context-free grammars. IEICE Transactions J71-D-I (1988) 758–765

13. Bertsch, E., Nederhof, M.J.: On the complexity of some extensions of RCG parsing.
In: 7th International Workshop on Parsing Technologies. (2001) 66–77

14. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley (1979)

15. Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland/Elsevier (1975)

16. Chiang, D.: Evaluating Grammar Formalisms for Applications to Natural Lan-
guage Processing and Biological Sequence Analysis. PhD thesis, University of
Pennsylvania (2004)

17. Satta, G.: Recognition of linear context-free rewriting systems. In: 30th Meeting
of the Association for Computational Linguistics, Newark, Delaware (1992) 89–95

Learnable Classes of General Combinatory
Grammars

Erwan Moreau

LINA - FRE CNRS 2729 - Université de Nantes,
2 rue de la Houssinière - BP 92208 - 44322 Nantes cedex 3

Erwan.Moreau@univ-nantes.fr

Abstract. Kanazawa has shown that k-valued classical categorial gram-
mars have the property of finite elasticity [1], which is a sufficient condi-
tion for learnability. He has also partially extended his result to general
combinatory grammars, but left open the question of whether some sub-
sets of general combinatory grammars have finite elasticity. We propose
a new sufficient condition which implies learnability of some classes of
k-valued general combinatory grammars, focusing on the way languages
are expressed through a grammatical formalism rather than the classes
of languages themselves.

1 Introduction

The problem of grammatical inference refers to the process of learning grammars
and/or languages from data. Applied to natural languages, this problem consists
in guessing, from a set of data corresponding to a (natural) language, “something
which represents this language”: a grammar. But what kind of grammar ? In this
article we propose to study learnability of the formalisms used to represent lan-
guages rather than the languages themselves. This question is especially important
for natural languages, since a lot of formalisms exist to represent them. As a con-
sequence, the fact that a class of natural languages is learnable is only interesting
if there is a way to represent it in a usable and linguistically appropriate way.

Gold’s model of identification in the limit is one of the most important for-
malizations of the learning process [2]. In this model, the learner must be able
to guess the right language after a finite number of examples, from an infi-
nite set of sentences belonging to this language. Several positive results have
been obtained in Gold’s model, in particular with categorial grammars: using
Buszkowski’s learning algorithm [3] for classical categorial grammars (also called
AB grammars), Kanazawa [1] has shown that k-valued AB grammars1 are learn-

1 A grammar is k-valued if each words is defined by at most k different types in the lexi-
con. In the special case where k = 1, the grammar is said to be rigid. This latter case is a
strong restriction over the expressive power of the corresponding language: Kanazawa
has shown that the class of k-valued AB grammars languages is strictly included in the
class of (k + 1)-valued languages. Furthermore, there are words in natural languages
that require several definitions: for example, the grammatical word “to” should not
have the same type when it is used with an infinitive or used as a preposition.

2005, LNAI 3492, pp. 189–204, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

190 E. Moreau

able from strings. More precisely, Kanazawa has shown that the class of structure
languages generated by rigid AB grammars has the property of finite elasticity
([4], [5]), which implies learnability and also that learnability can be extended
to k-valued grammars and to string languages. Kanazawa has also generalized
his learnability result to general combinatory grammars: in this framework it is
possible to consider any set of operators and any set of universal rules instead
of the usual AB grammars operators and rules. However Kanazawa shows only
that rigid structure languages are learnable, because finite elasticity does not
hold in this more general case. As a consequence, Kanazawa does not provide
any positive learnability result about k-valued general combinatory grammars,
which is a strong limitation to the usefulness of this result in the viewpoint of
natural languages.

The question of whether some subsets of general combinatory grammars have
finite elasticity was left open by Kanazawa. Costa Florêncio has given in [6] a
sufficient condition for finite elasticity in the form of restrictions over rules. Here
we propose another sufficient condition which does not include Costa Florêncio’s
one, but which relates more to grammatical formalisms than to technical con-
straints (a brief comparison between the two results is given in section 4.2).

The linguistic interest for general combinatory grammars lies in the fact that
it allows to express various formalisms through the set of universal rules: one can
see the set of rules (and operators) as a parameter of the class of languages which
is studied. This point is particularly interesting in the framework of grammatical
inference, because it permits to test rather easily whether a given grammatical
formalism enjoys some learnability properties: if the formalism can be expressed
using rules in the form of general combinatory grammars and if these rules
fulfill the conditions described in section 3.2, then learnability is proven. Several
examples of such formalisms which are (at least partially) learnable are given in
section 4.

2 General Combinatory Grammars

The name “general combinatory grammars” is used by Kanazawa to define
any class of grammars using a certain set of operators and universal rules (ex-
pressed as the rewriting of a sequence of terms containing variables into another
term). It refers to combinatory categorial grammars, defined by Steedman [7],
who proposed to add several rules to AB grammars, in order to give a better
syntactic description of natural languages. This means that AB grammars, as
well as combinatory categorial grammars, are instances of general combinatory
grammars.

Definition 1 (Terms). Given a set S of operators and a set V of variables,
the set of S-terms over V is the smallest set such that

Learnable Classes of General Combinatory Grammars 191

– any v ∈ V is an S-term over V,
– for any operator f ∈ S with arity(f) = n, if t1, . . . , tn are S-terms over V

then f(t1, . . . , tn) is an S-term over V.2

The size ‖t‖ and height h(t) of a term t are defined in the usual way: if t
is a variable then ‖t‖ = 1 and h(t) = 0. Otherwise if t = f(t1, . . . , tn) then
‖t‖ =

∑
1≤i≤n

‖ti‖ + 1 and h(t) = max({ h(ti) | 1 ≤ i ≤ n }) + 1.

#u(t) denotes the number of occurrences of a term u in a term t:

– if u = t then #u(t) = 1
– otherwise u �= t :

• if t is a variable, then #u(t) = 0
• if t = f(t1, . . . , tn) then #u(t) =

∑
1≤i≤n

#u(ti)

Definition 2 (Universal rule). Let S be a set of operators. Given a set of
variables V ar(R), a universal rule R over S is any expression of the form
A1, . . . , An → A0, where each Ai is an S-type over V ar(R).

Definition 3 (R-grammar). Let S be a set of operators and R a set of uni-
versal rules over S. An R-grammar is a system G = 〈Σ, P r, s, �〉 where

– Σ is the vocabulary,
– Pr is a finite set of variables, called primitive types. The set of types Tp is

then defined as the set of S-terms over Pr.
– s is an S-term over ∅: this is the special type for valid sentences (see defini-

tion 8).3

– � is a binary relation assigning one or several types to each word in the
vocabulary: � ⊆ Σ ×Tp. Each couple w � t in this relation is called a lexical
rule.

Remark: In the framework of categorial grammars, the special type s is tradi-
tionally defined as one of the primitive types. On the contrary, we can benefit
here of a more general definition of the set of operators S, which permits to
define s as a type using only these operators. This way it is really considered
different from the other types, which is particularly relevant in the framework of
grammatical inference. Furthermore, this definition permits to take into account
new interesting formalisms (see example in 4.3).

Lex(G) is defined as the set of types used in the lexicon: Lex(G) = { t ∈
Tp | there exists w such that w � t }.

2 The special case where arity(f) = 0 is included in this definition: if f is such an
operator, then it is an S-term over V.

3 Remark: s is an S-term over the empty set, which implies that there is at least one
operator f in S such that arity(f) = 0.

192 E. Moreau

Definition 4 (One-step derivation). Let S be a set of operators, R a set of
rules over S and G an R-grammar. For every rule R ∈ R, R = A1, . . . , An →
A0, the relation →R ⊆ Tp+ × Tp is defined as: t1, . . . , tn →R t0 if and only if
there exists a substitution σ : V ar(R) �→ Tp such that σ(Ai) = ti for all i.

The relation → is defined as t1, . . . , tn → t0 if there exists a rule R ∈ R such
that t1, . . . , tn →R t0.

From this definition it is possible to define the string derivation relation in
the usual following way: let ⇒ be the relation defined as α β γ ⇒ α t0 γ if and
only if β → t0, with α, γ ∈ Tp∗ and β ∈ Tp+. The relation ⇒∗ is defined as
the reflexive and transitive closure of ⇒. A string w1, . . . , wn is valid for the
R-grammar G if there exists a sequence of types t1, . . . , tn such that for all i
wi � ti and t1, . . . , tn ⇒∗ s.

Nevertheless, we will rather use the below definition that links derivation
to the existence of a “structure”, because we are also interested in structure
languages.

Definition 5 (R-structure). Let S be a set of operators and R a set of rules
over S, R = {R1, . . . , Rm}. Given a vocabulary Σ, the set of R-structures SLR
is the smallest set such that

– any word w ∈ Σ belongs to SLR,
– for any rule Ri = A1, . . . , An → A0,

if T1, . . . , Tn ∈ SLR then [Ri](T1, . . . , Tn) ∈ SLR.

Definition 6 (Yield of an R-structure). Let S be a set of operators and R
a set of rules over S. The yield of an R-structure T , denoted yield(T), is the
sequence of words occurring at it leaves. Formally:

– if T = w with w ∈ Σ, then yield(T) = w
– if T = [Ri](T1, . . . , Tn), then yield(T) = yield(T1), . . . , yield(Tn).

Definition 7 (Instance of an R-structure). Let S be a set of operators and
R a set of rules over S and G an R-grammar. Given an R-structure T , a couple
〈α, t0〉, where α ∈ Tp+ and t0 ∈ Tp, is an instance of T for G if the following
condition holds:

– if T = w with w ∈ Σ, then α = t0 and w � t0.
– if T = [Ri](T1, . . . , Tn), then there exist n couples 〈α1, t1〉, . . . , 〈αn, tn〉 such

that 〈αi, ti〉 is an instance of Ti for all i, α = α1 • . . . • αn and t1, . . . ,
tn →Ri t0.

Definition 8 (Languages of a grammar). Let S be a set of operators, R a
set of rules over S and G = 〈Σ, P r, s, �〉 an R-grammar.

– An R-structure T belongs to the structure language defined by G, denoted
T ∈ SL(G), if there exists an instance 〈α, s〉 of T for G.

Learnable Classes of General Combinatory Grammars 193

– A string (sequence of words) w1 . . . wn belongs to the string language defined
by G, denoted w1 . . . wn ∈ L(G) if there exists an R-structure T ∈ SL(G)
such that w1 . . . wn ∈ yield(T).

Example 1 (AB grammars). Let define the set of operators SAB as SAB =
{/(2), \(2), s(0)} and the set of rules RAB as the set containing only the two
following rules:

FA : A/B B → A V ar(FA) = {A,B}
BA : B B\A→ A V ar(BA) = {A,B}

The class of RAB-grammars corresponds exactly to the class of AB grammars.
Let G be the RAB-grammar defined with the lexicon { Peter � n ; Mary �

n ; loves � (n\s)/n }. the RAB-structure T = BA(Peter, FA(loves,Mary))
belongs to SL(G), because 〈 (n, (n\s)/n, n) , s 〉 is an instance of T for G. Since
yield(T) = { (Peter loves Mary) }, the sentence “Peter loves Mary” belongs
to L(G).

Definition 9 (#G). We denote the number of elements in a set E by #E.
Applied to a grammar G = 〈Σ, P r, s, �〉, the set considered is the set of the
lexical rules in G:

#G = #{ (w, t) with w ∈ Σ and t ∈ Tp | w � t}

As a consequence of this definition, a grammar G is included in a grammar
G′, denoted G ⊆ G′, if all lexical rules in G are also defined in G′.

Proposition 1. Let G and G′ be two R-grammars. If G ⊆ G′ then SL(G) ⊆
SL(G′).

Proof. Let T ∈ SL(G): there exists an instance 〈t1 . . . tn, s〉 of T for G. G ⊆ G′

implies that if wi �G ti then wi �G′ ti, so 〈t1 . . . tn, s〉 is also an instance of T for
G′, thus T ∈ SL(G′). ()

Definition 10 (k-valued grammar). G = 〈Σ, P r, s, �〉 is k-valued if for any
word w ∈ Σ: #{ t ∈ Tp | w � t } ≤ k.

Proposition 2. For any k ≥ 0 there exists k′ ≥ 0 such that

{ G | G is k−valued } ⊆ { G | #G ≤ k′ }

Proof. Clearly any k-valued grammar can not have more than k′ = k × #Σ
rules. ()

Definition 11 (Equivalent grammars). Two R-grammars G and G′ are said
to be equivalent if they differ only by a renaming of their primitive types.

Proposition 3. If G and G′ are equivalent, then SL(G) = SL(G′) (and as a
consequence L(G) = L(G′)).

194 E. Moreau

3 k-Valued Flat Grammars Are Learnable from
Structures

The distinction between functors and arguments is important in the first learning
algorithm for AB grammars defined by Buszkowski [3], and also in the extensions
given by Kanazawa [1]. However it is not the main point used by Kanazawa to
show finite elasticity of k-valued AB grammars. Here we propose to focus on this
distinction and its consequences in the learnability viewpoint, and see how this
particular property of AB grammars can be generalized. Thus we obtain a suffi-
cient condition for learnability of grammars through the criterion of “flatness”.

To show that such languages are learnable we will use Shinohara’s criterion
of bounded finite thickness. The general framework proposed by Shinohara has
the advantage to take into account the way languages are represented in the
formalization of learning. Actually this is not the case in the basic definition
of Gold’s identification in the limit, nor in Wright’s criterion of finite elastic-
ity, where the fact that languages must have a grammatical representation is
only implicit. But in the natural languages viewpoint this point is essential. In
particular, it is probably more interesting to be able to test whether a given
grammatical formalism has some learnability properties (due to the formalism
itself) than to know if it contains a learnable subclass of languages.

3.1 Gold’s Model of Identification in the Limit

In the following we use the abstract word objects to refer to the elements of a
language. These objects may be strings (that is simple sequences of words), but
also structures which may be more or less complex.

Gold’s model of identification in the limit is a formal model of learning [2]. In
this model, the learner has to guess the right language from an infinite sequence
of objects belonging to this language (positive examples). Formally, let φ be
a learning function, and L a language. Let 〈ai〉i∈N be any infinite sequence of
objects such that a ∈ 〈ai〉i∈N if and only if a ∈ L. φ converges to L if there exists
n ∈ N such that φ(〈a1, a2, . . . , an〉) = L, and for all i > n φ(〈a1, a2, . . . , ai〉) = L.
A class of languages L is learnable if there exists a learning function φ such that
for all L ∈ L, φ converges to L for any enumeration of L.

Wright has proposed in [4], [5] a sufficient condition for learnability, called
finite elasticity. A class L has infinite elasticity if there exist two infinite se-
quences a0, a1, . . . of objects and L1, L2, . . . of languages such that for any k ≥ 1
{a0, a1, . . . , ak−1} ⊆ Lk but ak /∈ Lk. A class L has finite elasticity if L does not
have infinite elasticity. Kanazawa has shown an important theorem about finite
elasticity in [1]: if a class L1 has finite elasticity and there exists a finite-valued4

relation between L1 and L2, then L2 has also finite elasticity.
Shinohara proposed in [8] a framework in which languages are defined through

a set of expressions, called a formal system. His definition of formal systems

4 A relation R ⊆ U1 ×U2 is finite-valued iff for every a ∈ U1 there are at most finitely
many b ∈ U2 such that Rab.

Learnable Classes of General Combinatory Grammars 195

corresponds to a general definition of grammars, except that these grammars
must consist of a set of elements (called expressions), that correspond usually
to rules: a concept defining framework is a triple 〈U , E ,M〉 of a universe U of
objects, a set E of expressions and a semantic mapping M that maps finite
subsets of E (grammars) to subsets of U (languages). A semantic mapping M is
monotonic if G ⊆ G′ implies M(G) ⊆ M(G′).

Example 2. Let SAB and RAB be the sets of AB grammars operators and rules,
as defined in example 1. Given a vocabulary Σ, let ER be the set of all possible
lexical rules w � t, with w ∈ Σ and t an SAB-term. Then the concept defining
framework 〈SLR, ER, SL〉 describes the grammatical system of the structure lan-
guage of AB grammars, and the concept defining framework 〈Σ, ER, L〉 describes
the grammatical system of the string language of AB grammars.

Given a concept defining framework 〈U , E ,M〉, a grammar G ⊆ E is reduced
with respect to a finite set of objects D ⊆ U if D ⊆ M(G) but D � M(G′) for
any grammar G′ ⊂ G.

Definition 12 (Bounded finite thickness). A concept defining framework
〈U , E ,M〉 has bounded finite thickness if M is monotonic and the set

{ M(G) | G is reduced with respect to D and #G ≤ n }
is finite for any D ⊆ U and any n ≥ 0.

Shinohara has shown that if a concept defining framework 〈U , E ,M〉 has
bounded finite thickness, then for any n ≥ 0 the class Ln = { M(G) | G ⊆
E and #G ≤ n } has finite elasticity (and then is learnable).

General combinatory grammars do not enjoy (in the general case) the same
learnability properties as AB grammars. This point is shown for example in [9],
where Costa-Florêncio gives an example of a class of rigid general combinatory
grammars which is not learnable.

3.2 Flat Grammars

The sufficient condition for learnability of general combinatory grammars that we
propose below lies in the restriction to flat grammars. Informally, this restriction
is based on the distinction between principal and argument types of a complex
type: each position in an operator is defined as principal or argument position,
and in the latter case any type built with this operator must verify that only
an atomic (or primitive) type is allowed in this position. This way the height
of any type in argument position is bounded, without bounding the height (nor
the size) of a type in general. We will show that this condition together with
suitable restrictions on the form of the rules (see definition 14) allow that the
class of languages has finite elasticity.

Definition 13 (Flat types). Let S be a set of operators, and for each operator
f in S let argf be a function from {1, . . . , arity(f)} to {0, 1}. Given a set of
variables V, the set of flat S-types over V, denoted FT (V), is defined as the
smallest set such that

196 E. Moreau

– V ⊆ FT (V),
– for any f ∈ S with arity(f) = n, if t1, . . . , tn are flat S − types over V then
f(t1, . . . , tn) ∈ FT (V) if ti ∈ V for any i such that argf (i) = 1.

A subtype u in a type t is said to be in argument position in t if there is a
subtype w in t such that w = f(t1, .., ti, .., tn), ti = u and argf (i) = 1.5 Clearly,
if t is a flat S-type over V then any subtype u which is in argument position in
t must be in V.

Definition 14 (Flat universal rule). Let R = A1, . . . , An → A0 be a uni-
versal rule over a set S of operators. R is a flat rule if the following conditions
hold:

– for any v ∈ V ar(R), if v is a subtype of A0 then there exists Ai with i ≥ 1
such that v is also a subtype of Ai.

– For each i, Ai ∈ FT (V ar(R)).
– For each variable v ∈ V ar(R) such that v is not in argument position in

the left hand side of R (that is there is no Ai with i ≥ 1 in which v is in
argument position):
• v is not in argument position in A0,
• and for each i ≥ 1: #v(Ai) ≤ #v(A0).

Given a set R of flat universal rules, G = 〈Σ, P r, s, �〉 is a flat R-grammar if
every type t ∈ Lex(G) is flat.

Example 3. The argument positions of AB grammars operators are defined in
the following way:

– arg/(1) = arg\(2) = 0
– arg/(2) = arg\(1) = 1

This means that in A/B (as well as in B\A) B is the only argument type. One
can see that AB grammars rules (defined in example 1) verify the conditions of
flat universal rules: In particular there is only one variable in each rule (namely
A) which does not occur in argument position in the left hand side, and the
condition that A must not occur in argument position in the right hand side is
fulfilled.

It is important to notice that all AB grammars types are not flat: for example,
(a/b)/c is flat whereas a/(b/c) is not. The relationship between flat AB grammars
and unrestricted AB grammars is discussed in section 4.1.

The following proposition shows that “flatness” of types is closed under
derivation with flat rules. This means that it is not necessary to add a restric-
tion to each derivation step so that it outputs only flat types, which would be
counter-intuitive: if all types are flat at the beginning and only flat rules are
used, then only flat types can appear.

5 Remark: in the case where there are several occurrences of u in t, it is sufficient that
one occurrence verifies the condition.

Learnable Classes of General Combinatory Grammars 197

Proposition 4. Let R be a flat rule, Pr a finite set of variables and t1, . . . , tn
flat S-types over Pr. If t1, . . . tn →R t0, then t0 is also a flat S-type.

Proof. Let R = A1, . . . , An → A0. t1, . . . , tn →R t0 implies that there is a
substitution σ such that σ(Ai) = ti for all i.

Suppose t0 = σ(A0) is not a flat type. Then there must be a subtype u in
σ(A0) such that u = f(u1, . . . , um), and there is a k, 1 ≤ k ≤ m, such that
argf (k) = 1 and uk /∈ Pr. For any variable vj ∈ V ar(R) (used in any ti) we
have σ(vj) ∈ FT (Pr), because σ(vj) is a subtype of at least one ti, i ≥ 1, and
ti ∈ FT (Pr). Therefore there is no vj such that u is a subtype of σ(vj). As
a consequence, A0 contains f(a1, . . . , am) as a subtype, with σ(ak) /∈ Pr. But
A0 ∈ FT (V ar(R)) and argf (k) = 1, so ak ∈ V ar(R). Since R is a flat rule and
ak is in argument position in A0, ak must appear in argument position in some
Ai, i ≥ 1. Thus σ(Ai) contains σ(ak) in argument position whereas σ(ak) /∈ Pr:
this contradicts the hypothesis that σ(Ai) = ti is a flat type. ()

The following propositions are used to show that flat general combinatory
grammars have bounded finite thickness. The proof, which is similar to Shino-
hara’s one in [8], consists in bounding the size of the possible reduced grammars.

Proposition 5. Let R be a flat rule, Pr a finite set of variables and t1, . . . , tn
flat S-types over Pr. If t1, . . . , tn →R t0, then for all i ≥ 1

‖ti‖ ≤ ‖t0‖ +MR, where MR = max({ ‖Ai‖ | 1 ≤ i ≤ n }) − ‖A0‖

Proof. Let R = A1, . . . , An → A0 and V ar(R) = {v1, . . . , vm}. t1, . . . , tn →R t0
implies that there is a substitution σ such that σ(Ai) = ti for all i.

For any 0 ≤ i ≤ n we have

‖ti‖ = ‖σ(Ai)‖ = ‖Ai‖ +
m∑

j=1

(#vj
(Ai) × (‖σ(vj)‖ − 1)),

V ar(R) is partitioned into two subsets Varg and Vpr:

Varg = { v ∈ V ar(R) | v is in argument position in the left hand side of R },

and Vpr = V ar(R) − Varg. Let Varg = {v′1, . . . , v′a} and Vpr = {v′′1 , . . . , v′′p}. For
any 0 ≤ i ≤ n

‖ti‖ = ‖Ai‖ +
a∑

j=1

(#v′
j
(Ai) × (‖σ(v′j)‖ − 1)) +

p∑
j=1

(#v′′
j
(Ai) × (‖σ(v′′j)‖ − 1))

Since ti = σ(Ai) is a flat type, for all j, 1 ≤ j ≤ a, σ(v′j) ∈ Pr. Therefore
‖σ(v′j)‖ = 1, which gives

a∑
j=1

(#v′
j
(Ai) × (‖σ(v′j)‖ − 1)) = 0,

then ‖ti‖ = ‖Ai‖ +
p∑

j=1

(#v′′
j
(Ai) × (‖σ(v′′j)‖ − 1))

198 E. Moreau

Since any v′′j ∈ Vpr is not in argument position in the left hand side of R and
R is a flat rule, v′′j verifies the condition #v′′

j
(Ai) ≤ #v′′

j
(A0) for all 1 ≤ i ≤ n.

Thus for all i ≥ 1:

‖ti‖ = ‖Ai‖ +
p∑

j=1

(#v′′
j
(Ai) × (‖σ(v′′j)‖ − 1))

≤ ‖Ai‖ +
p∑

j=1

(#v′′
j
(A0) × (‖σ(v′′j)‖ − 1))

≤MR + ‖A0‖ +
p∑

j=1

(#v′′
j
(A0) × (‖σ(v′′j)‖ − 1))

≤MR + ‖t0‖ ()

Proposition 6. Let G be a flat R-grammar and T an R-structure. If 〈t1 . . . tn,
t0〉 is an instance of T for G, then for all i, 1 ≤ i ≤ n:

‖ti‖ ≤ h(T) ×MR + ‖t0‖, where MR = max({MR |R ∈ R }).

Proof. We show by induction on h = h(T) that t0 ∈ FT (Pr) and ‖ti‖ ≤ h ×
MR + ‖t0‖:

– h = 0. T = w ∈ Σ, therefore n = 1 and t0 = t1 ∈ FT (Pr) because w � t1
and G is a flat grammar.

– h > 0. Suppose the property holds for any h′ < h. Let T = [R](T1, . . . , Tm),
and let 〈α1, u1〉, . . . , 〈αm, um〉 be instances of T1, . . . , Tm such that t1 . . . tn =
α1 • . . . • αm and u1, . . . , um →R t0. By induction hypothesis, the property
holds for any Ti: ui ∈ FT (Pr) and for all ti ∈ αj we have ‖ti‖ ≤ hj ×MR +
‖uj‖, with hj ≤ h′. From proposition 4 t0 ∈ FT (Pr), and from proposition
5 ‖uj‖ ≤ ‖t0‖ +MR, then ‖ti‖ ≤ hj ×MR + ‖t0‖ +MR. Since hj ≤ h − 1
and MR ≤ MR, we obtain ‖ti‖ ≤ (h − 1) × MR + ‖t0‖ + MR, that is
‖ti‖ ≤ h×MR + ‖t0‖. ()

Corollary 1. Let D be a finite set of R-structures and G a flat R-grammar.
If G is reduced with respect to D then every type t ∈ Lex(G) verifies ‖t‖ ≤
HD ×MR + ‖s‖, where HD = max({ h(T) | T ∈ D }).

Proof. w�G t and G is reduced with respect to D, so there exists an R-structure
T ∈ D and an instance 〈α, s〉 of T for G such that t ∈ α (otherwise it would be
possible to remove the rule w �G t from G, and G would not be reduced). By
proposition 6, ‖t‖ ≤ h(T) ×MR + ‖s‖ ≤ HD ×MR + ‖s‖. ()

Proposition 7. Let R be a finite set of flat rules, and ER the set of all flat
R-grammars lexical rules. The concept defining framework 〈SLR, ER, SL〉 has
bounded finite thickness.

Proof. G ⊆ G′ implies that SL(G) ⊆ SL(G′) from proposition 1. Let G ⊆ ER
be a grammar reduced with respect to a finite set D ⊆ SLR, with #G ≤ n.
Corollary 1 shows that the size of each type in Lex(G) is bounded by a constant

Learnable Classes of General Combinatory Grammars 199

HD ×MR + ‖s‖. There must be only finitely many pairwise inequivalent such
grammars, because the number of rules inG is also bounded. Since two equivalent
grammars have the same language (from proposition 3), we obtain that the set
{ SL(G) | G ⊆ ER is reduced with respect to D and #G ≤ n } is finite for any
set D and any n ≥ 0. ()

Remark: contrary to the case of simple AB grammars, where any
functor-argument structure is compatible with at least one grammar, there may
be no R-grammar corresponding to a given R-structure in SLR. Thus given
a set D of R-structures it is possible that there is no grammar reduced with
respect to D. Of course this does not contradict the previous result, since an
empty set is clearly finite.

Since Shinohara has shown that bounded finite thickness implies that the
class of languages definable by grammars with at most k rules has finite elasticity,
the following corollaries are obtained easily with proposition 2:

Corollary 2. Given any set R of flat rules and any k ≥ 0, the class of R-
structure languages definable by k-valued flat R-grammars is learnable.

Corollary 3. Let R be a set of flat rules such that any rule R = A1, . . . , An →
A0 in R verifies n ≥ 2. For any k ≥ 0, the class of string languages definable by
k-valued flat R-grammars is learnable.

Proof. Suppose every rule A1, . . . , An → A0 in R verify n ≥ 2. We show that
there is a finite-valued relation between the classes of R-structure languages and
of string languages definable by k-valued flat R-grammars. Let G be a k-valued
flat grammar. For every w ∈ L(G) the height h of the corresponding R-structure
must verify h < |w|, because n ≥ 2 for every rule in R. So there is only a finite
number of R-structures corresponding to a string w. Using the property (shown
by Kanazawa in [1]) that finite elasticity can be extended through a finite-valued
relation, the class of string languages definable by k-valued flat grammars has
also finite elasticity. ()

4 Application to Some Classes of R-Grammars

In this section we propose to apply these learnability results to several for-
malisms, which are more or less close to the general framework of categorial
grammars. Some of these positive results have already been proved separately.
Even so, the fact that they can be deduced directly in our framework is interest-
ing because it emphasizes the fact that their learnability is due to some common
properties. Thus learnability of flat general combinatory grammars is also to
some extent a generalization of different ways to prove learnability.

200 E. Moreau

4.1 Flat Classical Categorial Grammars and Extensions

Kanazawa has explored learnability of classical categorial grammars in [1]. In
particular, he has shown that k-valued AB grammars have finite elasticity, thus
are learnable from strings. We have seen in example 3 that AB grammars rules
verify the conditions of flat universal rules, therefore it is possible to show learn-
ability of k-valued flat AB grammars using corollaries 2 and 3 (from structures
as well as for strings).

Since all AB grammars are not flat, this result is included in the learnability
result obtained by Kanazawa (in which the definition of types is the usual one,
which does not require that types be flat). Nevertheless, any AB grammar can
be transformed into a flat AB grammar as it is shown in [10]. In this article,
the authors obtained a slightly different learnability result concerning also AB
grammars, by using also flat types (called compact types in their article). They
show that there exists a flat AB grammar for each AB grammar, thus proving
that the classes of languages are equivalent.6

Extensions. The interest in the framework of general combinatory grammars
is that it becomes possible to add specific rules to the usual AB grammars
system. For example, it is interesting in the dependency grammars viewpoint (see
for example [12]) to add the new operators /∗ (iterative types), /+ (repetitive
types), /? (optional types). The argument positions are defined in the same
way as for AB grammars rules, that is arg/∗(1) = arg/+(1) = arg/?(1) = 0 and
arg/∗(2) = arg/+(2) = arg/?(2) = 1. These operators are used with the following
rules:

R∗
1 : A/∗B B → A/∗B V ar(R∗

1) = {A,B}
R∗

2 : A/∗B → A V ar(R∗
2) = {A,B}

R+
1 : A/+B B → A/+B V ar(R+

1) = {A,B}
R+

2 : A/+B B → A V ar(R+
2) = {A,B}

R?
1 : A/?B B → A V ar(R?

1) = {A,B}
R?

2 : A/?B → A V ar(R?
2) = {A,B}

Remark: Symmetrical rules have to be defined for symmetrical operators on the
left: \∗, \+, \?.

Like AB grammars rules these rules are flat (the conditions of definition
14 are verified), therefore k-valued flat AB grammars with all these rules are
also learnable from structures. However this class is not necessarily learnable
from strings, because the rules R∗

2 and R?
2 do not fulfill the condition defined in

corollary 3: there must be at least two types in the left hand side. Actually, among
these operators the only one that can be added to AB grammars languages
without losing learnability from strings is the repetitive operator /+ (see [12] for
details about this point).

6 Such a proof can also be achieved using the classical transformation between AB
grammars and context-free grammars given in [11]: if the AB grammar is converted
into a CFG grammar and re-converted into an AB grammar, then the latter is flat.

Learnable Classes of General Combinatory Grammars 201

4.2 Steedman’s Combinatory Categorial Grammars

Costa Florêncio has shown in [6] a sufficient condition for finite elasticity of
any class of k-valued R-grammars. The condition that he provides is based on
the reduction of the class of languages to the class of k-valued AB grammars
languages (which has finite elasticity: shown in [1]), using the fact that a finite-
valued relation exists between the two classes. His criterion differs from ours: the
method used implies that it must be possible to transform the set of universal
rules into a set of rules which are very similar to AB grammars rules. But his
criterion also has the advantage that it does not put any restriction on the form
of the types, contrary to our condition (types must be flat). Actually the two
methods lead to two different learnability results, each result allowing to learn
classes that the other does not allow.

Costa Florêncio illustrates his learnability result with Steedman’s Combina-
tory Categorial Grammars rules (see for example [7] about CCG): he shows that
that the language generated by a subset of CCG rules is learnable. However one
of the usual CCG rules, namely the composition rule, can not be included in
this subset, whereas it can be used in our framework:7

>B (Forward Composition) A/B B/C → A/C V ar(>B) = {A,B,C}
<B (Backward Composition) C\B B\A→ C\A V ar(<B) = {A,B,C}
>S (Forward Substitution) (A/B)/C B/C → A/C V ar(>S) = {A,B,C}
<S (Backward Substitution) C\B C\(B\A) → C\A V ar(<S) = {A,B,C}

One can see that these rules verify the conditions of flat universal rules.
In particular, it is worth noting that type B in the composition rule > B is
in argument position in the left hand side (in A/B), even if there is also an
occurence of B in B/C. Nevertheless, the fact that this rule can be used in a
learnable class of grammars within our framework should not hide the fact that
it is usable only with flat types.

To provide a complete view of learnability of CCG rules, a word must be said
about the type raising rules:

>T : A→ B/(A\B) V ar(>T) = {A,B}
<T : A→ (B/A)\B V ar(<T) = {A,B}

These rules do not fulfill the conditions of “learnable rules” neither in Costa
Florêncio’s framework nor in ours (these rules are not flat because B does not ap-
pear in the left hand side). However types that can be used in these rules are re-
stricted to a finite set of categories, so it is possible to “simulate” these rules directly
in the lexicon [7]. This solution permits that such class of languages also have finite
elasticity.

In a totally different approach, Hockenmaier has explored the acquisition of
a combinatory categorial grammars lexicon in a practical viewpoint, in order to
build a wide-coverage parser for English [13].

7 Remark: traditionally, types using the \ operator in CCG are written Functor \
Argument, whereas the notation Argument\Functor is used in classical AB gram-
mars. We keep this latter notation here for consistency.

202 E. Moreau

4.3 Categorial Link Grammars

Link grammars are defined by Sleator and Temperley in [14]. This is a rather
simple formalism which is able to represent in a reliable way natural languages.
This can be seen in the modelization that the authors provided for English in this
system: their grammar deals with most of the linguistic phenomena in English,
as it can be verified using their link grammar parser [15].

Béchet has shown in [16] that k-valued link grammars are learnable from
strings, using also Shinohara’s property of bounded finite thickness. It is shown
in [17] that basic link grammars rules are equivalent to the following set of
R-grammars rules:

Rl : d(L, cons(c, R)) d(cons(c, nil), nil) → d(L,R) V ar(Rl) = {c, L,R}
Rr : d(nil, cons(c, nil)) d(cons(c, L), R) → d(L,R) V ar(Rr) = {c, L,R}

With these rules, a sequence of words is a correct sentence for the grammar
if there is a type for each word such that the sequence of types can be reduced
into the special type d(nil, nil).

Example 4. Let define a categorial link grammar G with the following lexicon:8

a,the � d([],[D])
cat, snake � d([D],[S]), d([O,D],[])
chased � d([S],[O])

The following derivation shows that the sentence “the cat chased a snake” is
correct for G:

the cat chased a snake
d([],[D]), d([D],[S]), d([S],[O]), d([],[D]), d([D,O],[])

⇒ d([],[S]), d([S],[O]), d([],[D]), d([D,O],[])
⇒ d([],[S]), d([S],[O]), d([O],[])
⇒ d([],[S]), d([S],[])
⇒ d([],[])

This system is called Categorial Link Grammars (CLG) (see [17] for more
details). Since the formalism of link grammars is (at first sight) very different
from categorial grammars, this equivalence permits to include the learnability
result for link grammars obtained by Béchet in the more general framework of
general combinatory grammars.

Let consider that the set of operators is {d(2), cons(2), nil(0)}, with argd(1)
= argd(2) = 0, argcons(1) = 1 and argcons(2) = 0. Clearly rules Rl and Rr are
flat, because L and R, which are the only variables that are not in argument
position in the left hand side, do not appear in argument position in the right
hand side. Thus it is possible to apply corollaries 2 and 3 to conclude that
k-valued flat categorial link grammars are learnable from structures and from
strings. Since the original definition of link grammars includes only flat types,
we obtain here the same result as Béchet in [16].

8 For a better readability, the notation [c1,c2,..,cn] for connectors lists is used here
instead of cons(c1,cons(c2,..cons(cn,nil)..)).

Learnable Classes of General Combinatory Grammars 203

5 Conclusion

In this study, we did not show that a new class of languages is learnable. But
we have shown that our result includes (partially or totally) several previous
learnability results. Actually, the main interest in this result is that it is fo-
cused on the way languages are expressed with a grammatical formalism: the
examples show that the framework of general combinatory grammars permits
to express very different formalisms through the set of universal rules, and that
the condition of flat grammars is not so restrictive. In particular the example of
link grammars shows that using other operators than the standard binary AB
grammars operators is possible and useful.

It should also be emphasized that the criterion of flat grammars, which is
a sufficient condition for learnability of k-valued grammars, is not an ad hoc
“technical” condition deduced from the constraints of the learning framework:
this criterion is suitable for learning from structures, and it can be easily tested
with any class of R-grammars. As a future work, it remains to see if this criterion
can be extended to more complex types. In particular, flat types means that
all types in argument positions must be atoms, and the consequence (which is
the main point of the proof) is that is possible to bound the size of all types.
Therefore an interesting question would be to know if it is possible to relax this
constraint (for example by bounding the order of the types) without losing this
consequence.

References

1. Kanazawa, M.: Learnable classes of categorial grammars. Cambridge University
Press (1998)

2. Gold, E.: Language identification in the limit. Information and control 10 (1967)
447–474

3. Buszkowski, W., Penn, G.: Categorial grammars determined from linguistic data
by unification. Technical Report TR-89-05, Department of Computer Science, Uni-
versity of Chicago (1989)

4. Wright, K.: Identification of unions of languages drawn from an identifiable class.
In: Proceedings of the Second Annual Workshop on Computational Learning The-
ory, Morgan Kaufmann (1989) 328–333

5. Motoki, T., Shinohara, T., Wright, K.: The correct definition of finite elasticity:
corrigendum to Identification of unions. In: Proceedings of the Fourth Annual
Workshop on Computational Learning Theory, San Mateo, CA, Morgan Kaufmann
(1991) 375

6. Costa Florêncio, C.: Combinatory categorial grammars and finite elasticity. In
Hoste, V., Pauw, G.D., eds.: Proceedings of the Eleventh Belgian-Dutch Conference
on Machine Learning, University of Antwerp (2001) 13–18

7. Steedman, M.: The Syntactic Process. The MIT Press, Cambridge, Massachusetts
(2000)

8. Shinohara, T.: Inductive inference of monotonic formal systems from positive data.
New Generation Computing 8 (1991) 371–384

204 E. Moreau

9. Costa Florêncio, C.: Learning categorial grammars. PhD thesis, Utrecht University
(2003)

10. Besombes, J., Marion, J.Y.: Learning reversible categorial grammars from struc-
tures. In: Proceedings of Categorial Grammars 2004, Montpellier, France. (2004)
148–163

11. Bar-Hillel, Y., Gaifman, C., Shamir, E.: On categorial and phrase structure gram-
mars (1960)

12. Béchet, D., Dikovsky, A., Foret, A., Moreau, E.: On learning discontinuous de-
pendencies from positive data. In: Proceedings of the 9th conference on Formal
Grammar. (2004)

13. Hockenmaier, J.: Data and models for statistical parsing with Combinatory Cate-
gorial Grammar. PhD thesis, School of Informatics, The University of Edinburgh
(2003)

14. Sleator, D.D.K., Temperley, D.: Parsing english with a link grammar. Technical
Report CMU-CS-TR-91-126, Carnegie Mellon University, Pittsburgh, PA (1991)

15. Temperley, D., Sleator, D., Lafferty, J.: Link grammar. http://
hyper.link.cs.cmu.edu/link/ (1991)

16. Béchet, D.: k-valued link grammars are learnable from strings. In: Proceedings
Formal Grammars 2003. (2003) 9–18

17. Moreau, E.: From link grammars to categorial grammars. In: Proceedings of Cat-
egorial Grammars 2004, Montpellier, France. (2004) 31–45

On Expressing Vague Quantification and Scalar
Implicatures in the Logic of Partial Information

Areski Nait Abdallah1 and Alain Lecomte2,3

1 INRIA-Rocquencourt, France
2 Université de Grenoble, CLIPS-IMAG

3 Université de Bordeaux, équipe SIGNES, LaBRI-INRIA, France

Abstract. In this paper, we use the logic of partial information to
re-examine some early analyses of vague quantifiers in French such as
quelques, peu, beaucoup that are found in particular in the work of O.
Ducrot [2]. Our approach is based on the paradigm offered by the logical
formalization of the sorites paradox. We claim that this paradox offers
a general scheme along which the argumentation structure of all vague
quantifiers in French may be expressed. We offer a variational principle
approximating Grice’s maxims in the case of vague quantification.

Keywords: vague quantification, implicatures, argumentation scales,
partial information.

1 Introduction

Most natural language quantifiers are vague. In this paper we are interested
in vague quantification in the French language, although our methods may be
generalized to other languages. In French, some examples of vague quantifiers are
given by beaucoup, peu, la plupart, quelques, pas tous, etc. They all express partial
information, and as such, their adequate treatment falls under the scope of a
logic of partial information [4]. Such a logic should allow the correct inferences
expected from linguistic usage to be drawn formally. These inferences are of more
than one kind. For example, from

il a lu quelques romans de Balzac (1)

(he has read some novels of Balzac) one should be able to trivially infer:

il a lu au moins un roman de Balzac (2)

(he has read at least one novel of Balzac.) Such a consequence literally follows
from the sentence uttered: we shall say that it is “hard” consequence of the
sentence in the sense that it is impossible to question such a consequence, once
the statement of the sentence from which it follows has been accepted. But one
should also be able to deduce (first pointed out by [3], see also [1]):

il n’a pas lu quelques romans de Balzac (3)

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 205–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

206 A. Nait Abdallah and A. Lecomte

(he has not read some novels of Balzac). Such a step is usually justified by calling
up Grice’s maxims : if it were not the case, namely if the person spoken about
had read all of Balzac novels, and if the speaker had been aware of that fact,
then he would not have uttered (1), but rather

il a lu tous les romans de Balzac (4)

The latter inference, however, does not have the same “firmness” as (2), as later
in the discourse one may find a retraction such as

il les a même tous lus (5)

(he has even read all of them.) According to [2], and in a manner that we feel is
similar, one should be able to infer:

il connâıt donc un peu Balzac (6)

(he knows a bit about Balzac.) This situation differs from sentence

il n’a pas lu tous les romans de Balzac (7)

(he has not read all of Balzac novels) which, although apparently inducing that
the person under consideration has read more novels that the one spoken about
in (1), is preferentially oriented towards the tentative conclusion:

il ne connâıt donc pas parfaitement Balzac (8)

(he does not have a perfect knowledge of Balzac.) It should be noted however,
that these two conclusions are defeasible, in the sense that we very well may
have fragments of discourse analogous to the following:

il a lu quelques romans de Balzac, pourtant il ne connâıt pas parfaitement Balzac
(9)

(he has read some of Balzac novel, still he does not have a perfect knowledge of
Balzac.) or

il a lu quelques romans de Balzac, pourtant il connâıt un peu Balzac (10)

(he has read some of Balzac novels, still he does have some knowledge of Balzac.)
In contrast, it must be noted that it is impossible to write

∗il a lu quelques romans de Balzac, pourtant (ou même, etc.) il n’en a lu aucun.
(11)

(he has read some of Balzac novels, still (or even, etc.) he has read none.) This
means that the conclusions drawn in (3) and (6) do not have the same status
as those drawn in (2). Such defeasible conclusions will be called weak. The aim
of the logic of Partial Information is to provide an account of both hard and
weak inference types. In that sense we think its application to the issue of scalar
implicatures is legitimate.

On Expressing Vague Quantification and Scalar Implicatures 207

2 Logic of Partial Information (LPI)

We briefly sketch the major ideas of the logic of partial information [4]. The
logic may be seen as an extension of classical partial logic, with two truth values
0, 1 and an absence of truth value denoted by ⊥. Kleene’s strong tables for
propositional logic connectives will be preferably used.

φ ∧ ψ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥

φ ∨ ψ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥

φ ¬φ
1 0
0 1
⊥ ⊥

φ→ ψ 1 0 ⊥
1 1 0 ⊥
0 1 1 1
⊥ 1 ⊥ ⊥

This yields a fragmented notion of truth in a partial model and of semantic scope.
If P is the set of propositional variables, f a partial truth value assignment (also
called valuation) f : P → {0, 1}, ϕ a formula, one defines satisfaction in the
classical sense as f |= ϕ iff f(ϕ) = 1, and potential satisfaction as f ||= ϕ iff
f(ϕ) �= 0.

In order to fill the gaps of our partial knowledge by means of tentative knowl-
edge, valuations are generalized to triples (i0,J, i1) where i0 and i1 are valua-
tions, and J is a non-empty set of valuations, such that i1 extends i0, every j ∈ J
extends i0. The basic schematic structure of ionic interpretations (i0,J, i1) may
be summarized as follows:

i0

R
��

�

�����
� R

��
R

��
�

���
��

�

S �� i1

j j′ . . .

Valuation i0 corresponds to hard knowledge, i1 corresponds to soft, tentative
knowledge, and set J represents the justifications.

– i0 is the kernel valuation (hard knowledge)
– J = {j, j′, . . .} �= ∅ are potential extensions of i0 (justification knowledge)
– i1 = is the belt valuation (soft knowledge)

where

1. soft knowledge extends hard knowledge,
2. potential extensions extend hard knowledge: i0 + j for each j ∈ J

At the syntactic level, one introduces a new partial implication �(n, p), called a
partial information ion. In essence �(n, p) is true iff justification n is acceptable,
and conclusion p is true in a “soft” sense, or justification n is not acceptable.

208 A. Nait Abdallah and A. Lecomte

The reader is referred to [4] for further details. The central points of rel-
evance to this paper have to do with the following comparison of LPI versus
non-monotonic reasoning:

1. Non-monotonic reasoning theories offer a global approach to ordinary com-
monsense reasoning; they specify coherent sets of beliefs.

2. In the standard approaches to non-monotonic reasoning, justifications are
swept under the rug.

3. In a theory of implicitness, justifications cannot be swept under the rug.
4. Whence the need of a local approach managing stepwise all the elements of

the reasoning process at each point.
5. It turns out that the non-monotonic character of commonsense reasoning is

a secondary surface effect following from the fact that we always reason with
partial information.

3 The Logic of Partial Information and the Sand Heap
Paradox

The logic of partial information offers a paradigmatic way of treating imprecision,
which illustrated by the famous sand heap paradox, due to Eubulides of Miletus.
I start with a heap of sand containing N grains of sand. I remove those grains
one by one. I know that when there will be only a few grains left, there will be
no heap left to be spoken about. What happens in-between these two extreme
cases? Above all, when am I in a position to decide that there is no sand heap
left? [4] p. 463 proposes to summarize the data as follows:

¬p(1) (12)
p(N) (13)
∀n.p(n + 1) → �(p(n), p(n)) (14)

where p(n) stands for property : n grains of sand constitute a heap of sand.
In this description, formula ¬p(1) corresponds to situations where we are in a
position to answer a definite hard no to the question Do we have a sand heap?
It corresponds to the negative boundary of predicate p. Similarly, formula p(N)
corresponds to the case where we are in a position to answer a definite hard yes
to the question Do we have a sand heap? It corresponds to the positive boundary
of predicate p.

The third formula (14) expresses a sorites axiom, and should be understood
as follows: for any n, if n+1 grains of sand constitute a heap of sand, then on the
condition that we admit as a justification that n grains of sand still constitute a
heap, we will be able to deduce, albeit in a weak manner, that n grains of sand
constitute a heap. If we start with N grains, which is the value for which we
acknowledge that there is indeed a “heap of sand” and if we decrease n, then
we must admit more and more justifications in order to infer the presence of a
heap of sand. Furthermore, such a presence will only be inferred in a weaker and

On Expressing Vague Quantification and Scalar Implicatures 209

weaker form. One may assume that there is in this descent some value nmax,
such that p(nmax) is still an admissible justification, but not p(nmax −1). When
n ranges between nmax and 1, the truth value of p(n) is simply undetermined:
this is in good correspondence with our intuition.

In this case we have only one sorites axiom, with a downward induction.

4 An Application to the Case of Quelques

By using LPI, we get defeasability and the availability of justifications as com-
putation objects for free. Remain to be solved the following two questions: What
justifications should one accept in order to admit the truth of a sentence such
as (1)? What is the computational meaning of Ducrot’s orientation of the argu-
mentation scale?

4.1 Generalizing the Sorites to Vague Quantifier Quelques

Let us start with the following formalization for a sentence containing quelques.
Let

– lu(k, n) stand for “k a lu exactement n romans de Balzac.”
– heap(k) for “k a lu quelques romans de Balzac.”
– luq(k, n) := (lu(k, n) → heap(k)) for “k a lu quelques romans de Balzac s’il

en a lu n”

We assume that the semantic content of a sentence such as (3) is given by the
following axioms:

(Q1) ∀k lu(k, 0) → ¬heap(k)
(Q2) ∃N∃N ′N ≤ N ′. ∀k∀n.N ≤ n ≤ N ′ → luq(k, n)
(q2b) ∀k∀n < N. luq(k, n + 1) → �(luq(k, n), luq(k, n))
(q2c) ∀k∀n ≥ N ′. luq(k, n) → �(luq(k, n + 1), luq(k, n + 1))
(Q3) The above reasons are the sole basis upon which one may claim

predicate heap(k) to hold.

The scope of the existential quantification ∃N∃N ′ is the three univeral formulae
in (Q2) through (q2c). These axioms will be part of the definition of quelques,
in other words, we have a (hard) boundary part and a (weak) sorites part:

– negative boundary: it is not possible to claim on a lu quelques romans (one
has read some novels) when one has not read any,

– positive boundary: there exists two bounds, a left bound N and a right bound
N ′, such that it is difficult to claim that on a lu quelques romans (one has
read some novels), in the case one has read less than N novels. It is also
difficult to claim that on n’a lu que quelques romans (one has only read
some novels) in the case one has read more than N ′ novels

– sorites: There exist two induction “principles” allowing one to extend hard
information:

210 A. Nait Abdallah and A. Lecomte

• downward induction: it becomes increasingly difficult to admit that one
has read some novels once one goes below left bound N of the positive
boundary. This is expressed by downward sorites axiom (q2b).

• upward induction: it becomes increasingly difficult to admit that one has
read some novels once one goes beyond right bound N ′ of the positive
boundary. This is expressed by upward sorites axiom (q2c).

Clause (Q1) is not expressible in terms of predicate luq(k, n), it is part of the
definition of this predicate. This incites us to think that there is a dual definition
associated with the definition of quelques namely the definition of pas . . . quelques
(corresponding in the current context to the construction il n’a pas lu quelques
romans de Balzac (he has not read some novels of Balzac). Using abbreviations,

– nheap(k) for “k n’a pas lu quelques romans de Balzac.”
– negluq(k, n) := (¬lu(k, n) → nheap(k)) for “k n’a pas lu quelques romans

de Balzac s’il n’en a pas lu n”

We assume that the semantic content of a sentence such as (1) is given by the
following axioms:

(Q1) ∀k lu(k, T) → ¬nheap(k)
(Q2) ∃M∃M ′M < M ′.
(q2a) ∀k∀n.M ≤ n ≤ M ′ → negluq(k, n)
(q2b) ∀k∀n < M.negluq(k, n + 1) → �(negluq(k, n), negluq(k, n))
(q2c) ∀k∀n ≥ M ′.negluq(k, n) → �(negluq(k, n + 1), negluq(k, n + 1))
(Q3) The above reasons are the sole basis upon which one may claim

predicate nheap(k) to hold.

where T is the total number of Balzac novels. Observe that the pair (M,M ′) is
not necessarily identical to the pair (N,N ′) occurring in the first set of clauses,
even though it might be.

Also observe that clauses (Q3) and (Q3) express closure properties. They
permit a Prolog-like negation as finite failure to be defined: it is impossible to
claim Pierre a lu quelques romans de Balzac (resp. Pierre n’a pas lu quelques
romans de Balzac) unless such a claim follows from clauses (Q1) through (Q3)
(resp. from clauses (Q1) through (Q3)). In other words, “on n’a pas lu quelques
romans de Balzac” (one has not read some of Balzac novels) may be claimed
only if:

– N ≤ n ≤ N ′ and one has read n such novels
– or n < N , n �= 0 and one has some justifications for the claim
– or n > N , and one has some justifications for the claim.

These clauses are thus to be read as a logic program, and this point will be
elaborated upon later. So, let us reconsider sentence (1) above il a lu quelques
romans de Balzac. Such a sentence is valid (accepted) only if one falls into one
of the three previous cases, namely:

On Expressing Vague Quantification and Scalar Implicatures 211

– if N ≤ n ≤ N ′, then lu(k, n) → heap(k), but lu(k, n) → ¬(lu(k, T −n). This
yieds three subcases:

• M ≤ T − n ≤ M ′, in which case one has nheap(k)
• T −n < M , in which case some justifications will be needed to establish

concluation nheap(k), which will be available as a weak conclusion.
• T − n > M ′, in which case some justifications will also be needed to

establish weak conclusion nheap(k). Since necessarily n �= 0, one has
T − n �= T , which prevents from reaching nheap(k) in the case k has
read all novels.

– if n < N , then some justifications are needed in order to prove heap(k); for
nheap(k), however, such a proof will depend on the position of T − n with
respect to M ′, and so on.

– the case n > N ′ is similar.

Therefore, in all cases, from (1) one may deduce (3) (whether in a strong sense
or in a weak sense.)

It thus appears that heap(k) and nheap(k) are not identical, if only because
the former is irreducibly false whenever lu(k, 0), whereas the same holds for the
latter when lu(k, T). We shall assume another difference that will best show
their duality : the likelihood of heap(k) decreases more drastically when the
number n of novels decreases on the short side of N than when n grows well
beyond N ′, while the opposite holds for nheap(k) (this will be made more precise
later on). In such a case, we shall say that heap(k) is positively oriented (i.e.
in the direction of ascending induction), while nheap(k) is negatively oriented
(i.e. in the sense of descending induction). If we now admit that “the words of
the discourse” (“les mots du discours” in Ducrot’s expression) are sensitive with
respect to this orientation, then we shall be able to explain why

il a lu quelques romans de Balzac, il les a même tous lus (15)

(he has read some novels of Balzac, he has even read all of them) is permitted,
whereas

∗il a lu quelques romans de Balzac, il en a même lu un (15)

(he has read some novels of Balzac, he has even read one of them) is not.
We suggest positing the following hypothesis:

Même fits in the preferred orientation of the predicate associated with the
scalar word

and even more precisely:

Même triggers the maximal inference possible in the preferred orientation of
the predicate associated with the scalar word

212 A. Nait Abdallah and A. Lecomte

4.2 Evaluating Softness Degrees: Natural Deduction and Logic
Programming

We are now in a position to start addressing the question asked at the beginning
of this Section.

Let us assume that as a general rule, k a lu quelques romans de Balzac s’il
en lu N1 (k has read some novels of Balzac if he has read N1 such novels),
expressed as ∀k.luq(k,N1). Such a rule may be given by the context of the
discourse under consideration. Let us also assume that la personne dont on parle
en a effectivement lu N2 (the person being spoken about has in fact read N2

novels), expressed by lu(c,N2).
Let N1 = 5, N2 = 3. The goal is to establish the degree of softness of

assertion il a lu quelques romans, knowing that the general rule is that X a lu
quelques romans de Balzac s’il en a lu cinq, expressed by ∀k.luq(k, 5)—and that
“la personne dont on parle en a effectivement lu trois.” expressed by lu(c, 3).”
The corresponding natural deduction uses these two premisses as well as the first
(downward) sorites axiom. It is as follows.

lu(c, 3)

∀k.luq(k, 5)
∀E

luq(c, 5) ∀k∀n.luq(k, n) → �(luq(k, n − 1), luq(k, n − 1))

�(luq(c, 4), luq(c, 4))

�(luq(c, 4), �(luq(c, 3), luq(c, 3)))

�(luq(c, 4), �(luq(c, 3), lu(c, 3) → heap(c)))
⇒ CE

�(luq(c, 4), �(luq(c, 3), heap(c)))
∃I

∃j1, . . . , js. � (j1, . . . , �(js, heap(c)) . . .)

Conclusion ∃j1, . . . , js. �(j1, . . . , �(js, heap(c)) . . .) corresponds to defeasible state-
ment “Il a lu quelques romans de Balzac, sous reserve de l’acceptation des jus-
tifications j” (he has read some novels of Balzac, subject to the acceptance
of justifications j). This natural deduction calls upon hard fact lu(c, 3), rule
∀k.luq(k, 5) and the downward sorites axiom. The models scheme having soft
conclusion heap(c) includes pattern +�luq(c, 4),+�luq(c, 3) |=soft heap(c)

This conclusion is reminiscent of a logic programming query. As a matter of
fact, if one starts with infinitary query (see [4] p. 507) , heap(c)∞, the following
logic programming derivation in LPI obtains:

heap(c)∞ → (16)
(lu(c, 3) → heap(c))∞ → use fact lu(3, c) (17)
(luq(c, 3))∞ → use def. luq(3, c) (18)
(luq(c, 4))∞ → use justif. ξ1 = luq(3, c) (19)
(luq(c, 5))∞ → use justif. ξ2 = luq(4, c) (20)
()∞ → use axiom ∀k.luq(k, 5), k = c (21)

This derivation ends with an empty query, and thus succeeds with justification
answer substitution given by ξ1 = luq(3, c), ξ2 = luq(4, c). These correspond to

On Expressing Vague Quantification and Scalar Implicatures 213

the justifications that must be accepted in order to derive initial goal Il a lu
quelques romans de Balzac.

4.3 Topology of the Argumentation Scale

It seems that an important property of the framework outlined here is the sub-
division of the argumentation scale into three parts: the positive and negative
boundaries, corresponding to the hard information part, and the sorites induc-
tion axioms part, corresponding to the cases where only soft conclusions may
be drawn.

4.3.1 Orientation of the Argumentation Scale and Approximation
of Grice’s Maxims

The orientation of the argumentation scale in the sense of Ducrot may be ex-
pressed in our framework by saying that those justifications that aim at obtaining
weak conclusions that are closer to the negative boundary have a cost, and that
they cost more than justifications supporting a weak conclusion closer to the
positive boundary. Hard conclusions have a zero cost.

More precisely, rule stated above:

Même triggers the maximal inference possible in the preferred orientation of
the predicate associated with the scalar word

may be expressed by saying the following:

1. “maximal possible inference” may be understood as “draw a maximal set of
conclusions”

2. “preferred orientation” : all predicate modified by a vague quantifier are
oriented towards their positive boundary.

3. in other words, one will draw, as a set of possible conclusions, all those that
follow from the positive boundary, plus what follows from the application of
the sorites induction axioms.

4. in *il a lu quelques romans de Balzac, il en a même lu un, claim il a lu un
has a maximal cost, according to the definition above.

5. therefore it must be discarded.

Technical details are as follows.

4.3.2 Cost Ordering
One may posit as a general principle that

– Every piece of knowledge produced in the reasoning process has a cost.
– The aim of the reasoning process is to minimize the cost of the conclusions

obtained.

Hard conclusions have cost zero. Soft conclusions that tend to the negative
boundary have a higher cost that those tending to the positive boundary i.e.

214 A. Nait Abdallah and A. Lecomte

the likelihood of the corresponding conclusion decreases more drastically in the
former case than in the latter.

The cost of a conclusion is (the minimum possible value of) the total cost of
all justifications supporting such a conclusion. More precisely, if Γ is the current
context, and ϕ a claim:

cost(ϕ) = cost of the shortest justification sequence ψ1, . . . ,ψn such that
Γ � �(ψ1, �(ψ2, . . . � (ψn,ϕ) . . .))

Minimizing costs of conclusions amounts to

– spontaneously preferring hard conclusions over soft ones, and
– spontaneously preferring soft conclusions tending towards the positive bound-

ary over soft conclusions tending towards the negative boundary.

Partial order on sets of beliefs may be only partially known.
We may even go further in formalisation, as seen in the next subsection.

4.3.3 Paths, Phase Space and Variational Principle
The notion of path (syntactic and semantic) is introduced in [4] chap. 19. Syntac-
tically, a path is an increasing sequence of sets of partial information ionic formu-
lae (Φ0, Φ1, . . .), semantically, it corresponds to a sequence of models (m0,m1, . . . ,
mn, . . .) such that for each i = 0, . . . ,mi + mi+1 for the information ordering,
mi |= Φi and the least upper bound m of (mn) is a model of the least upper
bound of the syntactic path. (Φi)i=0,... represent states in a dynamical process.
It is assumed that such process behave in order to follow optimal paths in some
convenient space of partial information states, called the phase space.

Models are in fact replaced by model schemes. A model scheme is simply a
set of properties (justifications) which caracterises a certain class of models.

If the process has k states, represented by sets of partial information ionic
formulae (Φ0, Φ1, . . . , Φk) and if M(Φi) is the set of model schemes associated
with Φi, M(Φ0)×M(Φ1)× . . .×M(Φk) is the phase space P of the process. We
then define a regular path as a path (x0, x1, . . .) traced through P such that ∀i
xi is minimal in M(Φi) for the cost ordering.

We then adopt the variational principle: Among all paths that it may take
through P , the system traces some regular path.

The actual value of the regular path traced through phase space may or may
not be known.
The variational principle is used to eliminate incorrect paths. This approach
may be seen as providing a (partial) approximation of Grice’s maxims in our
framework.

The principle of preferring hard conclusions over soft ones also corresponds
to the lazy evaluation principle of Piilog, an implementation of logic program-
ming in LPI designed by Rajnovich [5], and amounts to some sort of least effort
principle.

On Expressing Vague Quantification and Scalar Implicatures 215

Example 1. *Il a lu quelque romans de Balzac, il en a même lu un. The back-
ground knowledge Q for this problem is provided by clauses (Q1), (Q2) above.
Assume N = N ′ = 5.

Let Φ0 = {∃!n.lu(c, n), ∃γ. � (γ, heap(c))} represent the first sentence, and
let Φ1 = Φ0 ∪{lu(c, 1)} represent both sentences. We assume that ∃!n.lu(c, n) is
interpreted as infinite exclusive disjunction ⊕n∈Nlu(c, n).

Let M(Φ0) be the set of models schemes of Φ0 together with Q . Set M(Φ0)
contains infinitely many justification ordering minimal model schemes mn, where
n ∈ N is the number of novels read, given as follows:

mi = {lu(c, i),+�luq(c, 4), . . . ,+�luq(c, i), |=soft heap(c), . . .} for i = 1, . . . , 4.
m5 = {lu(c, 5), |= heap(c), . . .}
mj = {lu(c, j),+�luq(c, 6), . . . ,+�luq(c, j), |=soft heap(c), . . .} for j > 5.

Pattern m0 = {lu(c, 0),+�luq(c, 4), . . . ,+�luq(c, 1),−�luq(c, 0), � heap(c), . . .}
does not fit the bill, since it does not make heap(c) true in a soft sense. In the
cost ordering, m1 is the maximal element in M(Φ0).

Path (x0, x1) where x0 = m1 = {lu(c, 1),+�luq(c, 4), . . . ,+�luq(c, 1), |=soft

heap(c), . . .}, and x1 = {|= heap(c), lu(c, 1), . . .} is the only semantically correct
trajectory through P corresponding to syntactic path (Φ0, Φ1). However, path
(x0, x1) is not regular, since x0 ∈ M(Φ0) is not minimal for the cost ordering
on M(Φ0). �

Example 2. *Il a lu quelques romans de Balzac, il n’en a même lu aucun. We
now have Φ′

0 = Φ0 as above, and Φ′
1 = Φ0 ∪ {lu(c, 0)} . Here, in path (x0, x1),

one must have x0 = mn for some n �= 0 as above, in order to make heap(c) true
in a soft sense. But x1 must make lu(c, 0) true, therefore cannot be an extension
of such an x0. Therefore, since heap(c) must be false at step x1, no trajectory of
this system through the phase space makes heap(c) true in a soft sense at step
x0. In particular, no regular trajectory exists. �

5 Generalization to Other Vague Quantifiers in French

5.1 Outline of a General Paradigm for Scalar Implicatures

The axiomatizations above for quelques comprehend three components:

1. a range corresponding to situations where we must answer with a hard yes.
It defines the positive boundary of the predicate luq.

2. a second range corresponding to situations where we must answer with a
hard no. It defines the negative boundary of the predicate luq.

3. a third component describing a “soft” domain, corresponding to situations
where the sorites axioms must be called upon.

This suggests the following general scheme for vague quantifiers. By λ-abstraction
one may define fixpoint equation

heap = λϕ.Φ

where Φ = Φ(ϕ, θ) is given by the set of formulae:

216 A. Nait Abdallah and A. Lecomte

∀k ϕ(k, 0) → ¬heap(k) (22)
∃N∃N ′N ≤ N ′.∀k∀nN ≤ n ≤ N ′ → θ(k, n) (23)

∀k∀n < N θ(k, n + 1) → �(θ(k, n), θ(k, n)) (24)
∀k∀n ≥ N ′ θ(k, n) → �(θ(k, n + 1), θ(k, n + 1)) (25)

where θ is a predicate defined by implication:

θ(k, n) := (ϕ(k, n) → heap(k)) (26)

This scheme is quite general. We may retrieve a symmetrical form of the original
sorites paradox by choosing predicates ϕ, heap and θ as independent from k, and
N = N ′:

ϕ(0) → ¬heap (27)
∃N.∀n.n = N → θ(n) (28)

∀n < N θ(n + 1) → �(θ(n), θ(n)) (29)
∀n ≥ N θ(n) → �(θ(n + 1), θ(n + 1)) (30)

∀n.θ(n) ↔ (ϕ(n) → heap) (31)

The original paradox is reached via p(n) := θ(n). Symmetry is obtained via the
addition of an upward induction sorites axiom (30). Clearly, if the number of
grains of sand is equal to the number of particles of the universe, then we may
conclude that we still have a heap of sand only in a weak sense.

5.2 Application to Other Vague Quantifiers

Preliminary investigations show that the above approach applies to other vague
quantifiers in French, modulo some variations of the topology of the argumen-
tation scale. It turns out that every vague quantifier is characterized by

1. a positive boundary B+.
2. a negative boundary B−

3. one or two sorites induction axioms ranging over intervals S↑, S↓.

For example, for the quelques example discussed above, B− = {0}, B+ =
{N,N + 1, . . . , N ′}, S↓ = {1, . . . , N − 1}, S↑ = {N ′ + 1, . . . , T}, where T is
the total number of Balzac novels. And for the sorites paradox, B+ = {N},
B− = {0}, S↓ = {1, . . . , N − 1},

Examples of such topologies are as follows.

Sand heap paradox: 0
boundary

−
. sorites . boundary

+
.

Quelques: 0
boundary

−
. sorites . boundary

+
. sorites

Peu: 0
sorites boundary

+

sorites boundary

−

Un peu:
boundary

−
sorites

K
boundary

+
. sorites

On Expressing Vague Quantification and Scalar Implicatures 217

Beaucoup: 0
boundary

−
. sorites

K
boundary

+

Pas quelques: 0
sorites . boundary

+
. sorites [T

boundary

−

Thus the respective patterns of these examples over the alphabet {B+, B−, ↑, ↓}
may be summarized as follows:

quantifier pattern
sorites paradox B− ↓ B+

quelques B− ↓ B+ ↑
peu ↓ B+ ↑ B−

un peu B− ↓ B+ ↑
beaucoup B− ↓ B+

pas quelques ↓ B+ ↑ B−

Let us examine some differences between words like peu, un peu and quelques.
Intuitiveley, peu and un peu seem quite similar, but they differ in their argu-
mentative orientation, as shown by:

Il a lu peu de livres de Balzac DONC il ne connâıt pas bien Balzac (32)

(he read few books of Balzac, therefore he does not know Balzac well) versus:

Il en a lu un peu DONC il connâıt (un peu) Balzac (33)

(he read a few, therefore he knows (a little) about Balzac)
By (32), we mean that the person has read less than K books, for some rather
low K. The set of formulae corresponding to peu is:

∀k ϕ(k, T) → ¬heap(k) (34)
∃K∀k∀n. 1 ≤ n ≤ K → θ(k, n) (35)

∀k∀n < 1. θ(k, n + 1) → �(θ(k, n), θ(k, n)) (36)
∀k∀n ≥ K. θ(k, n) → �(θ(k, n + 1), θ(k, n + 1)) (37)

This corresponds to the topological scale above: the negative boundary is B− =
{T}, where T is the total number of books, the positive boundary is therefore
the opposite one, provided by small values: B+ = {1, 2 . . . ,K}. Sorites are used
for values less than 1 and values greater than K. Because 0 is on the positive
orientation, it will be possible to assert:

Il a lu peu de livres de Balzac... il n’en a même lu aucun (38)

Now, by (33), we mean that the person has read more than K books (K small)
but less than a certain K ′. The set of formulae is then the same as for quelques,
but a comparison of the two words (as they could appear in the same discourse
or uttered by the same locutor etc.), shows that K is systematically lower than
the N used in the set of formulae for quelques in the same context.

218 A. Nait Abdallah and A. Lecomte

The case of beaucoup is similar, using the same scheme as for un peu and
quelques, but different values for N , N ′. If we associate with each word w of this
family its own interval of positive ”hard” conclusions: B+ = B+

w = {Nw, Nw +
1, . . . , N ′

w} = [Nw, N ′
w], we have:

Nunpeu < Nquelques < Nbeaucoup

N ′
unpeu < N ′

quelques < N ′
beaucoup

but the scales associated with these three words have the same orientation (dif-
ferent from the one of peu, and pas...quelques). We can actually represent all
these scales as subscales of a general one, in such a way that the following frag-
ments of discourse are made possible:

Il a lu un peu de Balzac, il en a lu quelques romans (39)
Il a lu un peu de Balzac, il en a même lu beaucoup (40)
Il a lu quelques romans de Balzac, il en a même lu beaucoup (41)

Let us also observe that from

Il a lu beaucoup de romans de Balzac (42)

it is possible to draw the conclusion:

Il a lu quelques romans de Balzac (43)

but as a ”hard” consequence, by following the same reasoning as in section 4 for
proving that il n’a pas lu quelques romans de Balzac may be deduced from il a
lu quelques romans de Balzac.

5.3 Further Applications

This also generalizes to scalable adjectives, etc. Statement The Pathfinder expe-
dition to Mars was expensive corresponds to scheme

0
boundary

−
. sorites boundary

+

where B−corresponds to (depending on the scale) “the expedition was actually
not expensive” and B+corresponds to “the expedition was actually expensive.”

This regularity suggests sharpening up as follows our approach to the for-
malization for vague quantifiers in French.

An argumentation scale is a linearly ordered set. Such a linear order may or
may not have a minimal (resp. maximal) element. For the purpose of the current
discussion, we assume that the ordering is discrete, i.e. that it may embedded
into Z.

A general view of vague quantifiers from the argumentation point of view is as
follows. Here the definiendum is predicate heap, and the definiens is predicate ϕ.

On Expressing Vague Quantification and Scalar Implicatures 219

Let A be an argumentation scale. Let ϕ(k, n) be some given predicate.
∃B+, B−, S↑, S↓ ⊆ A such that

1. {B+, B−, S↑, S↓} is a partition of argumentation scale A.
2. ∀k∀n ∈ B+ ϕ(k, n) → heap(k) (i.e. ∀k∀n ∈ B+ θ(k, n).)
3. ∀k∀n ∈ B− ϕ(k, n) → ¬heap(k)
4. ∀k∀(n + 1) ∈ S↑ θ(k, n) → �(θ(k, n + 1), θ(k, n + 1))
5. ∀k∀n ∈ S↓ θ(k, n + 1) → �(θ(k, n), θ(k, n))

Furthermore, B+, B−, S↑, S↓ must be intervals, and thus generate a topology, in
the intuitive sense.

Whence, if μh.Φ(h) designates the least defined predicate satisfying Φ(h), it
seem that a general scheme encompassing all these case is given by definition:

q = μh.∃B+, B−, S↑, S↓ ⊆ A .A = B+ . B− . S↑ . S↓

∀k∀n ∈ B+ θ(k, n)
∀k∀n ∈ B− ϕ(k, n) → ¬h(k)
∀k∀(n + 1) ∈ S↑ θ(k, n) → �(θ(k, n + 1), θ(k, n + 1))
∀k∀n ∈ S↓ θ(k, n + 1) → �(θ(k, n), θ(k, n))

where one defines locally θ(k, n) := (ϕ(k, n) → h(k)). The variations between
different vague quantifers are accounted for in this definition by using as input
different partitions of argumentation scale A .

6 Conclusion

We have attempted to take into account some earlier analyses, particularly by O.
Ducrot [2], concerning some very sensitive discourse items which very frequently
occur in our everyday language. Such phenomena are very often dealt with by
calling up Grice’s maxims. It is true that classical pragmatics may be efficiently
applied here, but we regret that Grice’s maxims have currently no adequate
formalisation. This is the reason why we attempt to provide formal tools capable
at least to emulate what they actually can do.

Our approach is distinct from two other ones which have been popular in the
past:

– the non monotonic logical approach
– the ”fuzzy sets” approach

It is distinct from the first one because, as has been said in Section 2, it is not
limited to the search of consistent sets of beliefs, it allows computations step by
step and thus provides a way of representing dynamic processes. It is distinct
from the second one because, besides the fact that it does not use any kind of
”spurious” quantification, the undetermination is not seen here as some de re
property of the (ontological) entities themselves, but as a way of apprehending
reality through language.

220 A. Nait Abdallah and A. Lecomte

Concerning the latter point, it must be said that the true appropriate way
of formulating the issues here presented is probably dialogical. We must think of
two speakers engaged in a conversation, who try to agree on the sense of words
and their applicability to a given situation. Such a conversation could be like the
following:

A: Peter read some novels by Balzac
B: what do you mean by ”some”? five? six?
A: around five
B: actually, I know that Peter read three novels, do you still accept he read
”some”?

The appropriateness of ”some” thus results from conventions that locutors state
themselves, and from some kind of negociation process according to which they
finally agree whether they agree on certain justifications. This is very close to the
Wittgensteinian notion of language game [6], and calls for a theoretical frame-
work where word meanings would be negociated according to this pragmatical
conception of language. When we reflect on language, we perceive that not only
discourse items like quelques, peu, un peu, beaucoup etc. are ”vague” but ... al-
most every word!

References

1. G. Chierchia and S. McConnell-Ginet. Meaning and grammar. MIT Press, 2001.
2. O. Ducrot. Les échelles argumentatives. Editions de Minuit, 1980.
3. L. Horn. On the semantic properties of logical operators in English. PhD thesis,

1972.
4. M. A. Nait Abdallah. The logic of partial information. EATCS Research Mono-

graphs in Theoretical Computer Science. Spinger Verlag, 1995.
5. J.J. Rajnovich. Piilog: Partial information ionic logic programming. PhD thesis,

Department of Computer Science, University of Western Ontario, 2000.
6. L. Wittgenstein Philosophical Investigations edited by G.E.M. Anscombe and R.

Rhees. Oxford: Basil Blackwell, 1951.

Describing Lambda Terms in Context
Unification�

Joachim Niehren1 and Mateu Villaret2

1 INRIA Futurs, Lille, France
2 IMA-Universitat de Girona, Girona, Spain

Abstract. The constraint language for lambda structures (CLLS) is a
description language for lambda terms. CLLS provides parallelism con-
straints to talk about the tree structure of lambda terms, and lambda
binding constraints to specify variable binding. Parallelism constraints
alone have the same expressiveness as context unification. In this paper,
we show that lambda binding constraints can also be expressed in con-
text unification when permitting tree regular constraints.

Keywords: second-order unification, dominance constraints, computa-
tional linguistics, underspecified semantics.

1 Introduction

The constraint language for lambda structures (CLLS) is a first-order language
for describing lambda terms [5, 6]. CLLS provides parallelism constraints [7] to
talk about the tree structure of lambda terms, and lambda binding constraints
to specify variable binding. In particular, CLLS models the interaction of paral-
lelism and variable binding in lambda terms correctly.

CLLS supports parallelism constraints to model ellipsis in natural language.
These subsume dominance constraints [13, 23, 1, 4], an excellent modeling lan-
guage for scope underspecification [15]. CLLS features lambda binding con-
straints in order to analyze the interactions of scope and ellipsis, i.e., parallel
lambda binding. Further ingredients of CLLS are anaphoric binding constraints,
group parallelism and beta reduction constraints [2].

Parallelism constraints of CLLS alone have the same expressive power as the
context equations in context unification (CU) [14, 3]. CU is a variant of linear
second-order unification (LSOU) [9] which restricts second-order unification to
unifiers with linear lambda-terms. LSOU and CU only differ in variable binding;
this difference can be captured by imposing tree regular constraints [11].

� A previous version of the paper was presented at ICoS4. This research has been
partially supported, on the one hand, by the Mostrare project of INRIA Futurs and
the LIFL at the Universities of Lille 1 and 3, and on the other hand, by the spanish
projects: TIN2004-07672-C03-01 and TIN2004-04343.

2005, LNAI 3492, pp. 221–237, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
P. Blache (Eds.): LACLet al.

222 J. Niehren and M. Villaret

The decidability of the satisfiability problems for CU, LSOU, and CLLS –
with or without tree regular constraints – are prominent open questions. De-
cidability of CU was often conjectured (see e.g. [12]). This is because various
restrictions [3, 9, 18, 19, 20] make CU decidable, while the analogous restrictions
for second-order unification don’t [10]. A decidable fragment of CLLS that can
deal with most phenomena raised by scope underspecification and ellipsis was
proposed recently [8]. Generally speaking, CLLS is superior in semantic model-
ing, while CU has advantages for studying expressiveness. This is why this paper
investigates the expressiveness of CLLS by comparison to CU.

In this paper, we contribute the first comparison between CLLS and CU
which accounts for lambda binding constraints. The motivating question is whether
it is possible to describe the interaction of lambda binding and parallelism in
CU. In other words: can parallel lambda binding be expressed in CU similarly
to CLLS? Note that parallel lambda binding was one of the main motivations
for introducing CLLS as an alternative to CU. We give a positive answer to the
question but at the cost of tree regular constraints.

We show how to encode lambda binding and parallelism constraints in CU
with tree regular constraints. Our encoding composes several steps, one of which
exploits a recent variant of the famous relationship between monadic second-
order logic (MSO) and tree automata [16, 22]. Another step relies on the non-
intervenance property of lambda binding constraints, that we exhibit and prove
for the first time in the present paper.

Plan. We illustrate parallel lambda binding in CLLS and argue its relevance for
underspecified semantic modeling (Sec. 2). We recall tree structures, parallelism,
lambda structures, and parallel lambda binding (Sec.3 and 4), the basic notions
underlying CLLS, the constraint language for lambda structures (Sec. 5). We
exhibit the non-intervenance property of parallel lambda binding in CLLS and
prove it to hold (Sec. 6). Due to this property, we can encode parallel lambda
binding by using MSO formulas (Sec. 7). Parallelism constraints with MSO for-
mulas have the same expressiveness as CU with tree regular constraints (Sec.
8). We discuss the limitation of our approach with respect to group parallelism
(Sec. 9) and conclude with some open questions.

2 Parallel Lambda Binding in Semantics

The prime application of CLLS is the modeling of underspecification in natural
language semantics [5, 6]. It improves on previous approaches on analyzing that
were based on higher-order unification [21], LSOU [17], and CU. Here, we illus-
trate why parallel lambda binding is crucial to capture the interactions of scope
and ellipsis.

We consider the sentence: John saw a taxi and so did Bill. This elliptic sen-
tence has two possible meanings that can be represented in higher-order logic
by the following Boolean valued lambda terms:

Describing Lambda Terms in Context Unification 223

@

@ lam

@

@

and

@

@

X1 / X2 ~ X3 / X4

X0: X1:

X3:

taxi

see X2: John

var

exists

X4: Bill

Fig. 1. The graph of a CLLS constraint

1. There exists a taxi t seen by John and Bill:

exists taxi λt.(and (see john t) (see bill t))

2. There exists a taxi t1 seen by John and a taxi t2 seen by Bill.

and (exists taxi λt1.(see john t1)) (exists taxi λt2.(see bill t2))

The ellipses requires the meanings of source and target to be parallel except for
the contrasting elements john and bill. Note that the elided parallel segments,
shown underlined, are different in the two readings.

This example illustrates parallel lambda binding: in the first reading, both
occurrences of t are bound by the same lambda binder taking scope over both
parallel segments, while in the second case, the corresponding variables t1 and
t2 are bound by distinct lambda binders that correspond to each other in the
parallel segments. The parallel parts become equal if we rename the variables t1
and t2 to t. But renaming needs to be done carefully without variable capture.

The CLLS constraint in Fig. 1 can be derived by a compositional semantics
construction from a parse tree. The parallelism free part describes the meanings
of source sentence, the conjunction, and the target parallel element. By means
of dotted lines, that express dominance between nodes, it leaves underspecified
where to place the fragment with the lambda binder @(@(exists, taxi),lam(X0)),
either above the conjunction @(@(and,X1),X3) or below its first argument that
starts at node X1.

The parallelism constraint X1/X2 ∼ X3/X4 expresses the parallelism re-
quirement of the ellipses. The parallel segments X1/X2 and X3/X4 must have
equal tree structure and parallel binding relations. The meaning of parallel
lambda binding is formalized by CLLS’s lambda structures (see Section 4).

The lambda terms of both readings satisfy the constraint in Fig. 1. Binding
constraints are imposed by dashed edges from var to lam-labeled nodes, the
lambda binding constraints. The single dashed edge in Fig. 1 is satisfied in both

224 J. Niehren and M. Villaret

readings: in the first reading, it holds since t is bound by λt, in the second reading
it holds since t1 is bound by λt1 and since t2 is bound by λt2. No variable names
are used in CLLS; this avoids variable renaming and capturing during constraint
resolution once and for all.

Parallel lambda binding cannot be easily expressed in CU or LSOU where
lambda binding constraints are not available. In CU for instance, the only known
approach to express lambda binding is by adding variable names into function
symbols lamt and vart. Different variables should be named apart, in order to
avoid variable capture during constraint resolution. But this is not possible for
variables such as t1 and t2 above: context equality would impose equal names.

3 Tree Structures and Parallelism

We assume a finite signature Σ of function symbols ranged over by f, g. Each
function symbol has an arity ar(f) ≥ 0.

Finite Trees. A finite (rooted) tree τ over Σ is a ground term over Σ, i.e. τ ::=
f(τ1, . . . , τn) where n = ar(f) ≥ 0 and f ∈ Σ. We identify a node of a tree with
the word of positive integers π that addresses this node from the root:

nodesf(τ1,...,τn) = {ε} ∪ {iπ | 1 ≤ i ≤ n, π ∈ nodesτi}

The empty word ε is called the root of the tree, i.e. root(τ) = ε, while a word iπ
addresses the π node of the i-th subtree of τ . We freely identify a tree τ with the
function τ : nodesτ → Σ that maps nodes to their label; for τ = f(τ1, . . . , τn):

τ(π) = f(τ1, . . . , τn)(π) =
{
f if π = ε
τi(π′) if π = iπ′

If τ is a tree with π ∈ nodesτ then we write τ.π for the subtree of τ rooted by π,
and τ [π/τ ′] for the tree obtained by replacing the subtree of τ at node π by τ ′.

Dominance and Parallelism. Let τ be a tree with π, π′, π1, . . . , πn ∈ nodesτ . The
relation π:f(π1, . . . , πn) holds for τ if node π is labeled by f in τ and has the
children π1, . . . , πn in that order from left to right. This is if τ(π) = f and
π1 = π1, . . ., πn = πn where n = ar(f). The dominance relation π�∗π′ holds
for τ if π is an ancestor of π′, i.e. if π is above π′ in τ , i.e. if π is a prefix of π′.
Strict dominance π�+π′ holds for τ if π�∗π′ but not π=π′ in τ . The disjointness
relation π⊥π′ holds for τ if neither π�∗π′ nor π′�∗π in τ .

Definition 1. A segment σ = π/π1, . . . , πn of a tree τ is a tuple of nodes
π, π1, . . . , πn of τ such that π dominates all πi and, all πi with different in-
dex are pairwise disjoint. We call π the root of σ and π1, . . . , πn its holes. The
nodes of a segment σ of a tree τ lie between the root and the holes of σ in τ :

nodesτ (π/π1, . . . , πn)={π′ ∈ nodesτ | π�∗π′ and not πi�+π′ for any 1 ≤ i ≤ n}

Describing Lambda Terms in Context Unification 225

lam

lam

var

lamlam

var var
var var

(external binding)(internal binding) (no hanging binder)

Fig. 2. Axioms of parallel lambda binding

Segment nodes generalize tree nodes in that nodesτ.π = nodesτ (π/) for all
trees τ and π ∈ nodes(τ). The labels of holes do not belong to segments. The
inner nodes of a segment are those that are not holes:

nodes−τ (σ) = nodesτ (σ) − {π1, . . . , πn} if σ = π/π1, . . . , πn

Definition 2. A correspondence function between segments σ1 and σ2 with the
same number of holes of a tree τ is a function c : nodesτ (σ1) → nodesτ (σ2) that
is one-to-one and onto and satisfies the following homomorphism conditions:

1. The root of σ1 is mapped to the root of σ2 and the sequence of holes of σ1 is
mapped to the sequence of holes of σ2 in the same order.

2. The labels of inner nodes π ∈ nodes−τ (σ1) are preserved: τ(π) = τ(c(π)).
3. The children of inner nodes in π ∈ nodes−τ (σ1) are mapped to corresponding

children in σ2: for all 1 ≤ i ≤ ar(τ(π)) it holds that c(πi) = c(π)i.

We call two segments σ1 and σ2 of a tree structure τ (tree) parallel and write
σ1∼σ2 if and only if there exists a correspondence function between them.

4 Lambda Structures and Parallel Lambda Binding

Lambda structures represent lambda terms uniquely modulo renaming of bound
variables. They are tree structures extended by lambda binding edges. The sig-
nature Σ of lambda structures contains, at least, the symbols var (arity 0, for
variables), lam (arity 1, for abstraction), and @ (arity 2, for application).

@

varf

lam

11 12

1

ε

Fig. 3. λx. (f x)

The tree uses these symbols to reflect the structure of the
lambda term. The binding function λmaps var-labeled to lam-
labeled nodes. For example, Fig. 3 shows the lambda structure
of the term λx. (f x) which satisfies λ(12) = ε.

Definition 3. A lambda structure (τ, λ) is a pair of a tree τ
and a total binding function λ : τ−1(var) → τ−1(lam) such
that λ(π)�∗π for all var-nodes π in τ .

226 J. Niehren and M. Villaret

We consider lambda structures as logical structures with the relations of
tree structures, lambda binding λ(π) = π′, and its inverse relation. Inverse
lambda binding λ−1(π0)={π1, . . . , πn} states that π0 binds π1, . . . , πn and no
other nodes.

Definition 4. Two segments σ1, σ2 of a lambda structure (τ, λ) are (binding)
parallel σ1∼σ2 if they are tree parallel so that the correspondence function c
between σ1 and σ2 satisfies the following axioms of parallel binding (see Fig. 2):

Internal binder. Internal lambda binder in parallel segments correspond: for
all π ∈ nodes−τ (σ1) if λ(π) ∈ nodes−τ (σ1) then λ(c(π)) = c(λ(π)).

External binder. External lambda binder of corresponding var-nodes are equal:
for all π ∈ nodes−τ (σ1) if λ(π) �∈ nodes−τ (σ1) then λ(c(π)) = λ(π).

No hanging binder. A var-node below a segment cannot be bound by a lam-node
within: λ−1(π) ⊆ nodes−τ (σi) for all i ∈ 1, 2 and π ∈ nodes−τ (σi).

Note that this definition overloads the notion of parallelism σ1∼σ2. For tree
structures it means tree parallelism and for lambda structures binding paral-
lelism (if not stated differently). The following basic property will be useful to
prove Lemma 8 in Sec. 6.

Lemma 5. Parallelism in lambda structures is symmetric: if σ1∼σ2 holds in a
lambda structure then σ2∼σ1 holds as well.

Proof. Suppose that σ1 and σ2 are parallel segments of a lambda structure (τ, λ)
and that c is the correspondence function between them. By assumption, c satis-
fies the axioms of parallel binding. We have to show that the inverse correspon-
dence function c−1 also satisfies these axioms.

Internal binder. Let π, λ(π) ∈ nodes−τ (σ2) and π′ = c−1(π) be a node in
nodes−τ (σ1). Since λ(π′) dominates π′ there remain only two possibilities:

1. Case λ(π′) ∈ nodes−τ (σ1). The internal binder axiom for c yields c(λ(π′)) =
λ(c(π′)) = λ(π). We can apply the inverse function c−1 on both sides and
obtain λ(c−1(π)) = c−1(λ(π)) as required.

2. Case λ(π′) �∈ nodes−τ (σ1). The external binder axiom for c implies λ(π′) =
λ(c(π′)) = λ(π). If π′ does not belong to the inner nodes of σ2 then λ(π′) is
a hanging binder which is not possible. In the same way, we can prove by
induction that (c−1)n(π) must belong to the inner nodes of σ2 for all n ≥ 1.
But this is also impossible as trees are finite.

External binder. Suppose that π ∈ nodes−τ (σ2) while λ(π) �∈ nodes−τ (σ2). Let
π′ = c−1(π) ∈ nodes−τ (σ1). Again, there are two possibilities:

1. Case λ(π′) ∈ nodes−τ (σ1). The internal binder axiom for c yields c(λ(π′)) =
λ(c(π′)) = λ(π) which is impossible since λ(π) does not belong to the image
nodes−τ (σ2) of c.

2. Case λ(π′) �∈ nodes−τ (σ1). The external binder for c implies λ(π′) =
λ(c(π′)) = λ(π) as required.

No hanging binder. This axiom coincides for c and c−1.

Describing Lambda Terms in Context Unification 227

5 Constraint Languages

Given the model-theoretic notions of tree structures and lambda structures we
can now define logical languages for their description in the usual Tarski’an
manner.

We assume an infinite set X,Y, Z of node variables and define languages of
tree descriptions in Figure 4. A lambda binding constraint μ is a conjunction
of lambda binding and inverse lambda binding literals: λ(X)=Y means that
the value of X is a var-node that is lambda bound by the value of Y , while
λ−1(X)⊆{X1, . . . , Xm} says that all var-nodes bound by the lam-node denoted
by X are values of one of X1, . . . , Xm.

A dominance constraint is a conjunction of dominance X�∗Y and children-
labeling literals X:f(X1, . . . , Xn) that describe the respective relations in some
tree structure. We will write X=Y to abbreviate X�∗Y ∧ Y �∗X. Note that
dominance constraints are subsumed by parallelism constraints by definition.
A first-order dominance formula ν is built from dominance constraints and the
usual first-order connectives: universal quantification, negation, and conjunction.
These can also express existential quantification ∃X.ν and disjunction ν1 ∨ ν2
that we will freely use. Furthermore, we will write X �=Y instead of ¬X=Y and
X�+Y for X�∗Y ∧ X �=Y .

A parallelism constraint φ is a conjunction of children-labeling, dominance,
and parallelism literals S1∼S2. We use segment terms S of the formX/X1, . . . , Xm

to describe segments with m holes, given that the values of X and X1, . . . , Xm

satisfy the conditions imposed on the root and holes of segments (Definition 1).
Note that a parallelism literal S1∼S2 requires that the values of S1 and S2 are
indeed segments.

To keep this section self contained let us quickly recall some model theoretic
notions. We write var(ψ) for the set of free variables of a formula ψ of one of the
above kinds. A variable assignment to the nodes of a tree τ is a total function
α : V → nodes(τ) where V is a finite subset of node variables. A solution of a

Lambda binding constraints:

μ ::= λ(X)=Y | λ−1(X)⊆{X1, . . . , Xm} | μ1 ∧ μ2

First-order dominance formulas:

ν ::= X:f(X1, . . . , Xn) | X�∗Y | ∀X.ν | ¬ν | ν1 ∧ ν2

Parallelism constraints:

φ ::= X:f(X1, . . . , Xn) | X�∗Y | S1∼S2 | φ1 ∧ φ2

Segment terms:
S ::= X/X1, . . . , Xm (m ≥ 0)

Fig. 4. Logical languages for tree and lambda structures

228 J. Niehren and M. Villaret

formula ψ thus consists of a tree structure τ or a lambda structure (τ, λ) and
a variable assignment α : V → nodes(τ) such that var(ψ) ⊆ V . Segment terms
evaluate to tuples of nodes α(X/X1, . . . , Xn) = α(X)/α(X1), . . . , α(Xn) which
may or may not be segments. Apart from this, we require as usual that a formula
evaluates to true in all solutions. We write τ, α |= ψ if τ, α is a solution of ψ,
and similarly (τ, λ), α |= ψ. A formula is satisfiable if it has a solution.

Sections 6 and 7 deal with the translation required in the following theorem.

Theorem 6. Satisfiability of parallelism and lambda binding constraints φ ∧ μ
can be reduced in non-deterministic polynomial time to satisfiability of paral-
lelism constraints with first-order dominance formulas φ′ ∧ ν.

Note that the signature is part of the input of the respective satisfiability prob-
lems. This means that a formula φ ∧ μ over signature Σ can be translated to
some formula φ′ ∧ ν over some other signature Σ′. Section 8 links the result of
Theorem 6 to context unification plus tree regular constraints.

6 Non-intervenance Property

The idea behind our translation is to eliminate lambda bindings from the lambda-
binding and parallelism constraints, by naming the variable binders. This means
that we want to obtain similar parallelism constraints that use named labels
lamu and varu, instead of anonymous labels lam and var and lambda-binding
constraints.

In order to avoid undesired variable capture, we would like to associate dif-
ferent names to different lambda binders. But unfortunately we cannot always
do so in the presence of parallelism: corresponding lam-nodes have to carry the
same label lamu and corresponding var-nodes the same label varu.

Given that we cannot freely assign fresh names, we are faced with the danger
of capturing and have to avoid it. The simplest idea would be to forbid trees
where some node with label lamu intervenes between any two other nodes with
labels lamu and varu. This restriction can be easily expressed by a closed first-
order dominance formula or could also be directly checked by a tree automaton
in some tree regular constraint.

Unfortunately, the above restriction is too restrictive and thus not correct,
as illustrated by the following example:

lamu(@(lamu(@(a, varu)), varu))

It can always happen that a corresponding lamu takes place above of a bind-
ing lamu-node, so that the binding lamu intervenes between the corresponding
lamu-node and one of the varu-nodes bound by it. Thus we need a refined non-
intervenance property stating that no corresponding lamu may intervene between
a lamu-node and one of the varu-nodes it binds.

Describing Lambda Terms in Context Unification 229

Y/Y’X/X’ ~

Y’

V

lam

Y

X’

X

var

Fig. 5. Intervenance

Example 7. The following parallelism constraint that is
drawn in Fig. 5 is unsatisfiable:

X�+Y �+X ′ ∧ X/X ′∼Y/Y ′ ∧ Y �+V ∧ λ(V)=X

This will be proved by Lemma 8. The problem is that
lam-node Y must correspond to X but intervene be-
tween X and the var-node V that X binds.

Lemma 8. Let (τ, λ) be a lambda structure with parallel segments σ and σ′ that
correspond via the correspondence function c. For all π with λ(π) ∈ nodes−τ (σ)
it is not the case that λ(π)�+c(λ(π))�+π.

Proof. We suppose that λ(π) ∈ nodes−τ (σ) and λ(π)�+c(λ(π))�+π and derive
a contradiction. The segments σ and σ′ must overlap such that the root of σ
dominates that of σ′ properly.

root(σ)�+root(σ′)

Notice that π must belong to the inner nodes of segment σ, π ∈ nodes−τ (σ), since
otherwise λ(π) would be a hanging binder.

Now suppose π does not belong to the inner nodes of the lower segment
π �∈ nodes−τ (σ′). First of all, notice that π must be dominated by a hole of σ′

since otherwise π⊥root(σ′) and the lemma would follow trivially.
We also know that c(λ(π))�+π and belongs to the inner nodes of segments σ

and σ′, therefore we can apply axiom internal binder and we get that c(λ(π)) =
λ(c(π)), to avoid hanging binder axiom violation, c(π) must belong to the inner
nodes of segments σ and σ′, that corresponds to the next case.

Consider now the case that π also belongs to the inner nodes of the lower
segment π ∈ nodes−τ (σ′). We prove the following property inductively and thus
derive a contradiction: For all π ∈ nodes−τ (σ) ∩ nodes−τ (σ′) it is impossible that:

λ(π)�+c(λ(π))�+π.

The proof is by well-founded induction on the length of the word π.

1. Case root(σ′)�∗λ(π)�+c(λ(π)). Let π′ = c−1(π) be an inner node of σ.
The length of the word π′ is properly smaller than the length of π. Since
π′ belongs to the inner nodes of σ, the axiom for internal binder can be
applied to the correspondence function c yielding c(λ(π′)) = λ(c(π′)) and
thus c(λ(π′)) = λ(π). The node λ(π′) must properly dominate both c(λ(π′))
and π′. The address (length) of c(λ(π′)) is smaller than that of π′, so that:

λ(π′)�+c(λ(π′))�+π′

This is impossible as stated by induction hypothesis applied to π′.

230 J. Niehren and M. Villaret

2. Case λ(π)�+root(σ′)�∗c(λ(π)). Let π′ = c−1(π) be an inner node of σ.
Since π is externally bound outside of σ′, the axiom for external binder
applies to the inverse correspondence function c−1 by Lemma 5 and yields
λ(π′) = λ(π). By now, π′ is internally bound in σ. The axiom for internal
binder applied to correspondence function c yields: c(λ(π′)) = λ(c(π′))
which is c(λ(π)) = λ(π). This clearly contradicts λ(π)�+c(λ(π)).

7 Elimination of Lambda Binding Constraints

We now give a translation that eliminates lambda binding literals while pre-
serving satisfiability. The procedure is highly non-deterministic and introduces
first-order dominance formulas to express consistent naming of bound variables.

intervenelamu(Y, X) = ∃Z∃Z′. Y �+Z�+X ∧ Z:lamu(Z′)

bindu(X, Y) = ∃Z (Y :lamu(Z) ∧ Z�∗X ∧ X:varu) ∧ ¬intervenelamu(Y, X)

Fig. 6. Non-intervenance and lambda binding

We impose the non-intervenance property of Lemma 8 when expressing the
lambda binding predicate bindu(X,Y) in Fig. 6. This is defined by using the
predicate intervenelamu

(Y, X), that we express via first-order dominance formulas
that some lamu-node intervenes between X and Y .

Guessing Correspondence Classes. Corresponding lam and var nodes clearly have
to carry the same node labels. But we have to be a little more careful since we
may have several correspondence functions for several pairs of parallel segments.
We say that two nodes are in the same correspondence class for a given set of
correspondence functions {c1, . . . , cn} if they belong to the symmetric, reflexive,
transitive closure of the common graph of these functions.

11 12

1

ε

2f

f

a a

a

Fig. 7. f(f(a, a), a)

Consider for instance tree-structure τ of Fig 7, and
correspondence functions c1 and c2 defined by c1(11) =
12 and c2(12) = 2. Then, Cτ,{c1,c2} = {(11, 11), (11, 12),
(11, 2), (12, 11), (12, 12), (12, 2), (2, 11), (2, 12), (2, 2)} is
the symmetric, reflexive and transitive closure of {c1, c2}
in τ .

Given a parallelism and lambda binding constraint φ ∧ μ we consider the set
of correspondence functions for pairs of segments that are required to be parallel
in φ. But how can we know whether two variables of φ ∧ μ will denote nodes
in the same correspondence class? We want to guess an equivalence relation e
between variables of φ ∧ μ depending on a solution τ, α for φ ∧ μ, such that
for any two variables X and Y of φ ∧ μ, (X,Y) ∈ e ⇐⇒ (α(X), α(Y)) ∈
Cτ,{c1,...,cn}, where {c1, . . . , cn} are the correspondence functions for pairs of
segments that are required to be parallel in φ. We cannot do it a priori, but we

Describing Lambda Terms in Context Unification 231

simply guess it as there are only finitely many possibilities for the finitely many
variables.

Translation. We want to guess one of the possible partitions into correspondence
classes for variables of φ. Instead, we simply guess an equivalence relation on
the variables of φ, and as our proofs will show, we don’t have to express that
equivalent variables denote values in the same correspondence class. Let

equφ = {e | e ⊆ vars(φ) × vars(φ) equivalence relation}

be the set of possible equivalence relations on the variables of φ. We write e(X)
for the equivalence class of some variable X ∈ vars(φ) with respect to e, but
consider equivalence classes of distinct equivalence relations to be distinct. Let

namese = {e(X) | X ∈ vars(φ)}

be the set names of e which contains all equivalences classes of e. Note that
namese is finite for all e ∈ equφ, and that namese and namese′ are disjoint for
distinct equivalence classes e and e′.

We now fix a constraint Φ = φ ∧ μ and guess an equivalence relation e ∈ equφ

that determines the translation [.]e presented in Fig. 8. This translation maps
to a parallelism constraint plus first order dominance formulas φ′ ∧ ν over the
following signature Σφ which extends Σ with finitely many symbols:

Σφ = Σ . {lamu, varu | u ∈ namese, e ∈ equ(φ)}

The literal λ(X) = Y is translated to binde(Y)(X,Y) as explained before. This
ensures that all corresponding nodes in e are translated with the same name
e(Y). The axioms about external binding and no hanging binder are stated
by first-order dominance formulas in the translation of parallelism literals. The
first-order formulas are defined in Fig. 9. Note that the axiom of internal bind-
ing will always be satisfied without extra requirements.

We have to ensure that all varu-nodes in solutions of translated constraints
will be bound by some lamu-node. Let no−free−vare be as defined in Fig. 9. We
then define the complete translation [Φ] by:

[λ(X)=Y]e = binde(Y)(X, Y)
[λ−1(Y)⊆{X1, . . . , Xn}]e = ∀X.binde(Y)(X, Y) → ∨n

i=1X=Xi

[Y :lam(Z)]e = Y :lame(Y)(Z)
[X:var]e = ∃Y.

∨
{Z | Z:lam(Z′)∈φ} binde(Z)(X, Y)

[Y :f(Y1 . . . , Yn)]e = Y :f(Y1 . . . , Yn) if f �∈ {lam, var}
[X�∗Y]e = X�∗Y

[S1 ∼ S2]e = S1 ∼ S2 ∧ external−bindere(S1, S2) ∧
no−hang−bindere(S1) ∧ no−hang−bindere(S2)

[Φ1 ∧ Φ2]e = [Φ1]e ∧ [Φ2]e

Fig. 8. Naming variable binder for correspondence classes e

232 J. Niehren and M. Villaret

inside(X, Y/Y1, . . . , Yn) = Y �∗X ∧ (
∨

i∈{1..n} X�+Yi)

root(X, Y/Y1, . . . , Yn) = X=Y
no−hang−bindere(S) =

∧
u∈namese

no−hang−binderu(S)

no−hang−binderu(S) = ¬(∃Y ∃Z. bindu(Y, Z) ∧ ¬inside(Y, S) ∧ inside(Z, S))
external−bindere(S1, S2) =

∧
u∈namese

external−binderu(S1, S2)

external−binderu(S1, S2) =
∀Z1∀Z2∀Y. (bindu(Z1, Z2) ∧ inside(Z1, S1) ∧ ¬inside(Z2, S1) ∧ root(Y, S2))

→ (Z2�∗Y ∧ ¬intervenelamu(Z2, Y))
no−free−vare =

∧
u∈namese

∀X. X:varu → (∃Y ∃Z. Y :lamu(Z) ∧ Y �∗X)

Fig. 9. Auxiliary predicates

[Φ] =
∨

e∈equφ

[Φ]e ∧ no−free−vare

We want to prove that our translation preserves satisfiability. We split the
proof into the following two Lemmas:

Lemma 9. Let Φ be a conjunction of a parallelism and lambda binding con-
straint and e ∈ equ(Φ) an equivalence relation on vars(Φ). If [Φ]e ∧ no−free−vare
is satisfiable then Φ is satisfiable.

Let τ be a tree structure and α : vars → nodesτ an assignment with

τ, α |= [Φ]e ∧ no−free−vare

We now define a lambda structure (p(τ), λ) of signature Σ by projecting labels
away. The nodes of p(τ) are the nodes of τ . Let projection proj : Σφ → Σ be
the identity function except that proj(lamu) = lam and proj(varu) = var for any
u ∈ namese. The labels of p(τ) satisfy for all π ∈ nodesτ :

p(τ)(π) = proj(τ(π))

We define the lambda binding function λ : p(τ)−1(var) → p(τ)−1(lam) as follows:
Let π be a node such that p(τ)(π) = var. There exists a unique name u such
that τ(π) = varu. We define λ(π) to be the lowest ancestor of π that is labeled
by lamu. This is the unique node in p(τ) that satisfies bindu(π, λ(π)). It exists
since we required τ, α |= no−free−vare.

It remains to prove that p(τ), λ, α is indeed a solution of Φ, i.e. whether
(p(τ), λ), α satisfies all literals of Φ.

– X�∗Y in Φ: The dominance relation of τ coincides with that of p(τ). Since
τ, α |= X�∗Y it follows that (p(τ), λ), α |= X�∗Y .

– X:f(X1, . . . , Xn) in Φ where f �∈ {lam, var}. The labeling relation of τ coin-
cides with that of p(τ), so there is no difference again.

– X:var in Φ: Notice that binde(Y)(X,Y) enforces X to be a vare(Y)-labeled
node in [Φ]e, which implies (p(τ), λ), α |= X:var by the definition of p.

Describing Lambda Terms in Context Unification 233

– X:lam(Z) in Φ: Now, the literal X:lame(X)(Z) belongs to [Φ]e. Thus, τ, α |=
X:lame(X)(Z) which implies (p(τ), λ), α |= X:lam(Z) by the definition of p.

– λ(X)=Y in Φ: Let τ, α |= [λ(X)=Y]e. By definition of the translation
[λ(X)=Y]e this means that τ, α |= binde(Y)(X,Y). In particular, it fol-
lows that α(Y) is the lowest lame(Y)-labeled ancestor of the vare(Y)-labeled
node α(X). The definition of the lambda-binding relation of p(τ) yields
(p(τ), λ), α |= λ(X)=Y as required.

– λ−1(Y) ⊆ {X1, . . . , Xn} in Φ: the proof for this literal follows straightforward
using similar arguments as for the previous one.

Consider at last, S1∼S2 in Φ: This is the most complicated case. If τ, α satisfies
this literal then clearly, (p(τ), λ), α satisfies the correspondence conditions for
all labeling and children relations. We have to verify that (p(τ), λ) also satis-
fies the conditions of parallel binding. Let c : nodes−τ (α(S1)) → nodes−τ (α(S2))
be the correspondence function between α(S1) and α(S2) which exists since
τ, α |= [Φ]e.

Internal binder. Let λ(π1)=π2 for some π1, π2 ∈ nodes−τ (α(S1)). By definition
of λ, there exists a name u such that τ(π1) = varu and π2 is the lowest node
above π1 with τ(π2) = lamu. Since the labels of the nodes on the path between
π1 and π2 are equal to the labels of the nodes of the corresponding path from
c(π1) to c(π2) it follows that τ(c(π1)) = varu, τ(c(π2)) = lamu and that no node
in between is labeled with lamu. Thus, λ(c(π1)) = c(π2).

External binder. Suppose that λ(π1)=π2 for two nodes π1 ∈ nodes−τ (α(S1))
and π2 �∈ nodes−τ (α(S1)). There exists a name u such that τ(π1) = varu and π2

is the lowest ancestor of π1 with τ(π2) = lamu. By correspondence, it follows
that τ(c(π1)) = varu and that no lamu-node lies on the path form the root of
segment α(S2) to c(π1). The predicate external−binderu(S1, S2) requires that π2

dominates that root of α(S2) and that no lamu-node intervenes on the path
from π2 to that root. Thus, π2 is the lowest ancestor of c(π1) that satisfies
τ(π2) = lamu, i.e. λ(c(π1)) = π2.

No hanging binder. Let S be either of the segment terms S1 or S2. Suppose
that λ(π1)=π2 for some nodes π1 /∈ nodes−τ (S) and π2 ∈ nodes−τ (S). There exists
a name u ∈ namese such that τ(π1) = varu and π2 is the lowest ancestor of π1

with τ(π2) = lamu. This contradicts that τ, α solves no−hang−binderu(S) as
required by [S1∼S2]e.

Lemma 10. If Φ has a solution whose correspondence classes induce the equiv-
alence relation e then [Φ]e ∧ no−free−vare is satisfiable.

Let Φ be a conjunction of a parallelism and lambda binding constraint over
signature Σ and (τ, λ), α a solution of it. Let {c1, . . . , cn} be the correspondence
functions for the parallel segments α(S) ∼ α(S′) where S∼S′ belongs to φ.
Let c ⊆ nodesτ × nodesτ be the reflexive, symmetric, and transitive closure of
{c1, . . . , cn}, and e ∈ equ(Φ) be the relation {(X,Y) | (α(X), α(Y)) ∈ c}.

234 J. Niehren and M. Villaret

We define treee(τ, λ) as a tree over the extended signature Σφ whose nodes
are those of τ and whose labeling function satisfies for all π ∈ nodesτ that:

treee(τ, λ)(π) =

⎧⎨
⎩

lame(X) if (π, α(X)) ∈ c, τ(π) = lam, X ∈ vars(Φ)
vare(X) if (λ(π), α(X)) ∈ c,X ∈ vars(Φ)
τ(π) otherwise

We now prove that treee(τ, λ), α solves [Φ]e, i.e. all of its conjuncts. This can
be easily verified for dominance, labeling, and parallelism literals in [Φ]e. Notice
in particular that corresponding lam-nodes in τ are assigned the same labels in
treee(τ, λ). Next, we consider the first-order formulas introduced in the transla-
tion of lambda binding and parallelism literals.

1. Case binde(Y)(X,Y) in [Φ]e. This requires either λ(X)=Y or λ−1(Y) ⊆
{X1, . . . , Xn} or X:var in Φ. Let’s consider the first case, the corresponding
cases of λ−1(Y) ⊆ {X1, . . . , Xn} in Φ, and of X:var in Φ are quite similar. It
then clearly holds that treee(τ, λ)(α(X)) = vare(Y) and treee(τ, λ)(α(Y)) =
lame(Y). Furthermore α(Y)�+α(X). It remains to show for treee(τ, λ) that
no lame(Y)-node intervenes between α(X) and α(Y). We do this by contradic-
tion. Suppose there exists π such that α(Y)�+π�+α(X) and treee(τ, λ)(π) =
lame(Y). By definition of treee(τ, λ) there exists Z such that (π, α(Z)) ∈ c
and e(Y) = e(Z). Hence (α(Y), α(Z)) ∈ c and thus (π, α(Y)) ∈ c. But this
is impossible by the non-intervenance property shown in Lemma 8: no lam-
node such as π that corresponds to α(Y) intervene between α(Y) and the
var-node α(X) bound by it.

2. Case external−binderu(S1, S2) in [Φ]e where S1∼S2 in Φ and u ∈ namese. By
contradiction. Suppose that there exist π1 ∈ nodesτ (α(S1)), π2 �∈
nodesτ (α(S1)) such that treee(τ, λ)(π1) = varu and π2 is the lowest an-
cestor of π1 with treee(τ, λ)(π2) = lamu. Furthermore, assume either not
π2�∗root(α(S2)) or intervenelamu

(π2, root(α(S2))). The first choice is impos-
sible since the binding axioms were violated otherwise. (The correspondent
of an externally bound node must be bound externally). Let π′

1 be the cor-
respondent of π1 with respect to the parallel segment α(S1)∼α(S2). By
Lemma 8 we know that no lam-node corresponding to π2 can intervene be-
tween π2 and π′ and thus between π2 and root(S2). This also contradicts the
second choice: intervenelamu

(π2, root(α(S2))).
3. no−hang−bindere(S) in [Φ]e where S is either S1 or S2 and S1∼S2 in Φ. Let’s

proceed by contradiction. If it is not satisfied by treee(τ, λ), α, then there
must exist a name u ∈ namesφ and two nodes π1, π2 such that treee(τ, λ)(π1) =
lamu and treee(τ, λ)(π2) = varu, even more π1 ∈ nodesτ (α(S)), π2 �∈
nodesτ (α(S)) and there not exists a third node π3 between π1 and π2. Then,
by Lemma 8, π1 can not be a corresponding node of the lambda binding
node of π2, therefore, by definition of treee(τ, λ) λ(π1) = π2 ∈ λ, but
this is impossible because (τ, λ), α must satisfy the no hanging binder
condition.

4. Finally, we prove that treee(τ, λ), α satisfies no−free−vare. This is simple.

Describing Lambda Terms in Context Unification 235

Proposition 11. A parallelism and lambda binding constraint φ ∧ μ is satis-
fiable if and only if its translation [φ ∧ μ] is.

8 Context Unification with Tree Regular Constraints

CU is the problem of solving context equations over the algebra of trees and
contexts. Let the hole marker • be a new symbol. A context γ over Σ is a
tree over Σ ∪ {•} such that the hole maker occurs at most once. For instance,
C = f(•, a) is a context. The application of context C to a tree t over Σ, noted
f(•, a)(t) is the tree f(t, a) obtained from C by replacing the hole marker • by t.

In CU we may have first-order variables x denoting trees over Σ and context
variables C that denote contexts. The following context equations express the
CLLS constraint in Fig 1 except for lambda binding:

x = C(see@john@var) C is the context of the verb in readings x
C = C1(exists@taxi@lam(C2)) C contains the quantifier
C = C3(and@C4@C5(bill)) and the conjunction
C5 = C2(see@ • @var) bill and john do the same

We can enrich context equations by imposing tree regular constraints where A
is a tree-automaton over Σ.

x ∈ L(A)

Tree regular constraints can express MSO formulas over dominance constraints,
even in the presence of parallelism constraints.

Theorem 12 (Theorem 11 of [16]). Conjunctions of parallelism constraints
with MSO dominance formulas have the same expressiveness as parallelism con-
straints with tree regular constraints.

Finally, one can translate parallelism constraints to CU according to [14].
The proof of this paper can be easily extended to tree regular constraints:

Proposition 13 (Extension of [14]). Parallelism with tree regular constraints
have the same expressiveness as CU with tree regular constraints.

Theorem 14. Conjunctions of parallelism and lambda binding constraints are
satisfaction equivalent to CU equations with tree regular constraints.

This is a corollary to Theorems 6 and 12 and Proposition 13.

9 Limitations

It is proposed in [2] to extend CLLS by group parallelism in order to deal with
beta reduction constraints. The question is now whether group parallelism can
be expressed in context unification with tree regular constraints. This is a rela-
tion between groups of segments (S1, . . . , Sn)∼(S′

1, . . . , S
′
n) that behaves like a

conjunction of parallelism literals ∧n
i=1Si∼S′

i but such that hanging binders are
defined with respect to groups of segments (S1, . . . , Sn) resp. (S′

1, . . . , S
′
n).

236 J. Niehren and M. Villaret

X1

X4

@

X2

X3

var

varX5

lam

lam

X7

X6

@

Fig. 10. Group Paral-

lelism

Unfortunately, we cannot extend the encodings of
the present paper. The problem is that group paral-
lelism does not satisfy the non-intervenance property
as stated for ordinary parallelism in Lemma 8. Indeed,
it is not always possible to name variables consistently
in the presence of group parallelism, so that corre-
sponding binder of parallel groups are named alike. In
other words, binding parallelism cannot be reduced to
tree parallelism by naming binders. This is illustrated
by the lambda structure in Fig. 10 which satisfies the
group parallelism constraint:

(X1/X2, X4/X5)∼(X2/X3, X3/X4)

Even though the lam-node X2 corresponds to X1, X2 intervenes between X1 and
its bound var-node X6. We thus cannot name these corresponding nodes alike.

10 Conclusion and Future Work

We have shown that the lambda-binding constraints of CLLS can be expressed
in CU with tree regular constraints. The proof relies on the non-intervenance
property of parallel lambda binding in CLLS that we establish. We leave it open
whether all of CLLS can be translated into CU, in particular group parallelism,
beta reduction, or anaphoric binding constraints. Another open question is how
to characterize the decidable well-nested fragment of parallelism constraints [8]
in a decidable fragment of CU.

References

1. R. Backofen, J. Rogers, and K. Vijay-Shanker. A first-order axiomatization of the
theory of finite trees. Journal of Logic, Language, and Information, 4:5–39, 1995.

2. Manuel Bodirsky, Katrin Erk, Alexander Koller, and Joachim Niehren. Under-
specified beta reduction. In ACL, pages 74–81, 2001.

3. Hubert Comon. Completion of rewrite systems with membership constraints. Sym-
bolic Computation, 25(4):397–453, 1998. Extends on a paper at ICALP’92.

4. Denys Duchier and Claire Gardent. Tree descriptions, constraints and incremen-
tality. In Computing Meaning, Linguistics and Philosophy, pages 205–227. 2001.

5. Markus Egg, Alexander Koller, and Joachim Niehren. The constraint language for
lambda structures. Logic, Language, and Information, 10:457–485, 2001.

6. Katrin Erk, Alexander Koller, and Joachim Niehren. Processing underspecified
semantic representations in the constraint language for lambda structures. Journal
of Research on Language and Computation, 1(1):127–169, 2002.

7. Katrin Erk and Joachim Niehren. Parallelism constraints. In RTA’00, volume 1833
of LNCS, pages 110–126, 2000.

8. Katrin Erk and Joachim Niehren. Well-nested parallelism constraints for ellipsis
resolution. In EACL, pages 115–122, 2003.

Describing Lambda Terms in Context Unification 237

9. Jordi Levy. Linear second-order unification. In RTA, volume 1103 of LNCS, pages
332–346, 1996.

10. Jordi Levy and Margus Veanes. On the undecidability of second-order unification.
Information and Computation, 159:125–150, 2000.

11. Jordi Levy and Mateu Villaret. Linear second-order unification and context unifi-
cation with tree-regular constraints. In RTA, pages 156–171, 2000.

12. Jordi Levy and Mateu Villaret. Context unification and traversal equations. In
RTA’01, volume 2051 of LNCS, pages 167–184, 2001.

13. Mitchell P. Marcus, Donald Hindle, and Margaret M. Fleck. D-theory: Talking
about talking about trees. In Proceedings of the 21st ACL, pages 129–136, 1983.

14. Joachim Niehren and Alexander Koller. Dominance constraints in context unifica-
tion. In 3rd LACL’98 (Grenoble, France), volume 2014 of LNAI, 2001.

15. Joachim Niehren and Stefan Thater. Bridging the gap between underspecification
formalisms: Minimal recursion semantics as dominance constraints. In 41st Meeting
of the Association of Computational Linguistics, pages 367–374, July 2003.

16. Joachim Niehren and Mateu Villaret. Parallelism and tree regular constraints. In
LPAR’02, volume 2514 of LNAI, pages 311–326, 2002.

17. Manfred Pinkal. Radical underspecification. In Proceedings of the 10th Amsterdam
Colloquium, pages 587–606, 1996.

18. Manfred Schmidt-Schauß. A decision algorithm for distributive unification. Theo-
retical Computer Science, 208:111–148, 1998.

19. Manfred Schmidt-Schauß and Klaus U. Schulz. Solvability of context equations
with two context variables is decidable. In CADE-16, LNAI, pages 67–81, 1999.

20. Manfred Schmidt-Schauß and Klaus U. Schulz. Decidability of bounded higher-
order unification. In Computer Science Logic, volume 2471 of LNAI, 2002.

21. Stuart Shieber, Fernando Pereira, and Mary Dalrymple. Interaction of scope and
ellipsis. Linguistics & Philosophy, 19:527–552, 1996.

22. J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems
Theory, 2(1):57–81, 1967.

23. K. Vijay-Shanker. Using descriptions of trees in a tree adjoining grammar. Com-
putational Linguistics, 18:481–518, 1992.

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 238–254, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Category Theoretical Semantics for Pregroup Grammars

Anne Preller

 LIRMM/CNRS, 34392 Montpellier, France
preller@lirmm.fr

Abstract. We describe the derivations in a pregroup grammar as the 2-cells of a
free compact 2-category defined by the grammar. The 2-cells of this category
are the intermediary parsing structures necessary for a semantic interpretation
when pregroups are used in natural language processing. The construction of
the free compact 2-category also provides another cut-free axiomatisation of
compact bilinear logic.

1 Introduction

This paper is an introduction to joint work with Joachim Lambek on the free compact
2-category generated by an arbitrary category C .

Pregroups have been introduced in [1]. In linguistic applications, one has recourse
to the free pregroup generated by a partially ordered set of basic types. A pregroup is

a partially ordered monoid in which each element a has both a left adjoint a and a

right adjoint ra , such that

 1a a a a→ → , 1r raa a a→ → ,

where the arrow denotes the partial order.
For example, look at the following English phrases:

 horses and roses

 2 2 2c (n n n) cr 2n→

 pictures of horses

 = 2 2 2 2c (n n o)cr 2n→

Mary saw (pictures of horses) and roses (1.1)

 1 2n (s o)rπ 2c (2 2n n or) 2c (2n n nr) 2c

 = 1 2 2 2 2 2 2 2n (s o)c (n n o)c (n n n)c
rr rπ 2s→

 Mary saw pictures of (horses and roses) (1.2)

 1 2n (s o)rπ 2c (2 2n n or) 2c (2n n nr) 2c

 Category Theoretical Semantics for Pregroup Grammars 239

 = 1 2 2 2 2 2 2 2n (s o)c (n n o)c (n n n)cr r rπ 2s→

Here we have employed the following basic types: 2s (statement in the past tense), o

(direct object), π (subject), n (noun-phrase when number does not matter), 1n

(singular noun phrase), 2n (plural noun phrase), and 2c (plural count noun). We also
postulate

 2 2c n n→ → , 1n n→ , n o→ , n π→

to determine the partial order among basic types, so that e.g.

 2 1c n nnr r→ → , 2 1o n o o→ → , 1 1n r rπ ππ→ → .

Note that we have assigned to each English word a type, namely a string of simple
types of the form

...a , a , a, a, a ...r rr

where a is any basic type. In the example, pictures, horses, roses, Mary have been
assigned basic types whereas

saw: 2s orπ , and: 2n n nr , of: 2 2n n or .

The two derivations of

1 2n (s o)rπ 2c (n nor) 2c (2n n nr) 2c 2s→

have different meanings, and must be represented differently in a discourse structure.
This suggests that we must be able to distinguish between different derivations and
therefore should take the arrow to denote not just derivability, but the actual
derivation. Therefore the two distinct derivations above might be thought of as
morphisms in a certain category, where the categorical structure introduces equality
on derivations. As we shall see, the derivations are 2-cells in a compact 2-category
with one 0-cell, freely generated by a given partially ordered set or, more generally,
category C .

We construct a compact 2-category T(C), freely generated by C . The 2-cells of
T(C), the so called transitions, are labelled graphs and generalise derivations in
pregroup grammars. They can also be described as labelled transition systems [2].
Horizontal composition models parallelism, vertical composition models temporal
composition of these systems. Our transition systems are given in normal form, i.e.
they have initial and final, but no intermediary states. Otherwise said, the 2-cells can
be generated without vertical composition. The fact that every 2-cell is equal to a 2-
cell in normal form is the categorical version of what logicians call “cut-elimination”.
The normal form corresponds to a cut-free axiomatisation of compact bilinear logic
different from that given in [3]. Our proof also provides a linear algorithm for
computing composition in T(C).

240 A. Preller

2 Compact 2-Categories Recalled

The concept of a 2-category generalises the notion of the category of natural
transformations t F G: → between functors F :M → N , G :M → N . Here the
categories M and N are the 0-cells, F and G the 1-cells and t is a 2-cell. The
usual definition of natural transformations requires the commutativity of the
following diagram, where f A B: → is a given arrow in the category M ,

 FA Ff⎯⎯⎯→ FB

 tA tf tB

 GA Gf⎯⎯⎯→ GB

that is the equality

 tB Ff Gf tA tf= = , for f A B t G F: , :→ → , (2.1)

where denotes the composition of 2-cells. It is reasonable to denote the diagonal
by tf .

Now this equality is valid in any 2-category where A , B , F and G are arbitrary
1-cells, and FA , tA , tf denotes horizontal composition.

This horizontal composition is to be distinguished from the vertical composition

 : t ss t F G H⎯⎯→ ⎯⎯→ ,

the usual composition of 2-cells. The two compositions are related by the equality

 s t g f sg tf()() = , (2.2)

Mac Lane’s so-called interchange law [4].
If we identify B with 1B and F with 1F , we see that (2.1) is a special case of (2.2).
But (2.2) can also be deduced from (2.1) and the distributive laws

 s t C sC tC() = , F g f Fg Ff() = . (2.3)

As a consequence of (2.1), note that

 1 1 1 1 1 1 1FA F A F A A FA F F A= = = . (2.4)

A 2-category is said to be compact, if every 1-cell has both a left and a right adjoint.

A 1-cell G is said to be the right adjoint G = rF of 1-cell F or F the left adjoint

F G= of G , if there are 2-cells 1:G G Gε → and 1:G GGη → such that

 1G G GG Gε η = , 1G G G
G Gε η = (2. 5)

or, identifying 1G with G ,

 G GG G Gε η = , G GG G Gε η = .

As in linguistic applications, call Gε a contraction and Gη an expansion.

 Category Theoretical Semantics for Pregroup Grammars 241

All the usual properties of adjoints, familiar from the category of (small) categories
remain valid in an arbitrary 2-category. For example, adjoints are unique up to
isomorphism (see e.g. [4]). This implies in particular that

 r rG G G . (2. 6)

Note that if H has a left adjoint H with universal 2-cells Gε and Gη , then GH has

a left adjoint H G with universal 2-cells

 GH H GH H=ε ε ε , GH H GG G=η η η . (2.7)

In particular, it follows that

 GH H G() and r r rGH H G() . (2.8)

For any 2-cell f F G: → , one can define 2-cells f G F: → and r r rf G F: →
by

 G Ff F G fF Gε η= . (2.9)

 r r

r r r r r

G F
f F F fG G= ε η (2.10)

We note that F GfF Gf=η η and G FG f f F=ε ε .

Hence we introduce the generalised contraction fε as a common name:

 fε = 1G FG f f F G F:= →ε ε . (2.11)

Similarly, we may define a generalised expansion

 fη = 1F GfF Gf GF:= →η η (2.12)

It follows that

 r rf f f= = (2.13)

 g f f g() = , r r rg f f g() = . (2.14)

In the following we concentrate on the so called a strictly monoidal categories, i.e. 2-
categories with only one 0-cell. As there is only one 0-cell, horizontal composition is
defined for arbitrary 1-cells and in view of (2.1), we may assume that the same holds
for arbitrary 2-cells.

3 Transitions

For a given category C , we introduce a category T (C) in which the 2-cells are
labelled graphs, called transitions, and show that it is the compact strictly monoidal
category freely generated by C .

242 A. Preller

As C is to be embedded in the free category, the objects A,B, .. of C , are
identified with 1-cells, and the arrows of C with 2-cells such that composition in C
becomes vertical composition in T (C). Let

 2 1 0 1 2() () () () ()..., A , A , A , A , A , ...− −

stand for

 r rr..., A , A , A , A , A ,

The 1-cells of T (C) are strings

1

1
nzz

n
())A ...AΓ (= , iz ∈ , iA ∈ C ,

where the empty string represents the unit 1. Following pregroup terminology, 1-cells

of the form z()A are called simple types and strings of simple types are called types.

Using letters ,A B for simple types, we refer to the integer z such that zA ()A= as
the marker of A and to A as the base of A .

Right and left adjoints are defined in the meta-language

1 11 1
1 1

n nz zz z
n n

())) ()(A ... A) A ...A(−(−= ,

1 11 1
1 1

n nz zz zr
n n

())) ()(A ... A) A ...A(+(+= .

In particular

 1z z() ()(A) A −= , 1z r z() ()(A) A += .

It is customary in pregroup grammars to represent contractions of simple types as
under-links:

 1:A A Aε →
A

A A or A A .

By analogy, we introduce over-links for expansions of simple types:

1:A AAη →

A

AA or AA .

Representing an arrow s A B: → of C as a vertical link
 A

 s
 B ,

we generalize this to

 2()A − 1()B − 0()A 1()B 2()A z()A z()A

 2()s − 1()s − 0()s 1()s 2()s with for 1 (z)
A

 2()B − 1()A − 0()B 1()A 2()B z()A z()A .

Again, 2 1 0 1 2() () () () ()...,s ,s ,s ,s ,s , ...− − stands for ...,s ,s ,s ,s ,s , ...r rr . It is

convenient to think of ()s z as a copy of s and declare z z z() () ()s : A B→ if either

 Category Theoretical Semantics for Pregroup Grammars 243

s : A B→ and z even or s : B A→ and z odd. We use :s A B→ for
z z z() () ()s : A B→ and refer to it as a simple arrow. We call the integer such that

()s zs = the marker and the arrow s the base of s . If ()s :zs A B= → ,
()t :zt B C= → we define

t s = ()(t s) z , if z is even

 = ()(s t) z , if z is odd.
Another convenient notation concerning simple arrows is

 1() ()(s) sz zs −= =
1r z r zs () ()(s) s += = .

It follows from these definitions that ()t s s t= and ()r r rt s s t= .
The idea is to extend this graphical representation of contractions, expansions and

simple arrows to all 2-cells of the free category, using links labelled by simple arrows.
Horizontal composition is represented by the disjoint union of sets of links. For
example,

A A A A

 stands for A A A AA A: →η , and for AA AA A A: →ε .

 A A A A

The vertical composition must then satisfy A AA A A=ε η , i.e. we must identify

 A A

 A A A and

 A A

This is completely general: the composite path identifies with the link through its
endpoints. For s B A: → , we represent the generalised contraction

1s A BA s s A A B:= = →ε ε ε by
s

A B

and then must define vertical composition such that

 A B A B

 s = s =
s

A B .

 A A B B

244 A. Preller

Similarly, we represent the generalised expansion

 1s B AsB As AB:= = →η η η by

s

A B .

Definition 1
A transition 1 1:m ng A A B B→ over C is a set of labelled links { },i k

 1i nA A A 1 i k mA A A A... ,

ik

s
ik

s
ik

s

 1k nB B B 1 i k mB B B B...

where i and k are distinct1 positions in the domain 1 ... mA A or the codomain 1 ... nB B .

The following conditions must hold:

A) The labels of the links have the form z
iks ()s= , z ∈ and s in C , such that

1) If { }i k, is vertical, i.e. i in the domain and k in the codomain, then
z

iA ()A= and z

k
B ()B= and either s : A B→ if z is even, or

s : B A→ if z is odd.

(This says that s points downward, i.e. from the domain to the codomain, if z is
even, and upward if z is odd).

2) If { }i k, is an under-link, i.e. i and k are in the domain, and if i k< ,

then 1z

i
A ()B −= and z

k
A ()A= and either s : A B→ if z is even, or

s : B A→ if z is odd.

(This means that in under-links, s has its tail at the base with the even marker and its
head at the base with the odd marker).

3) If { }i k, is an over-link , i.e. i and k are in the codomain, and if i k< ,

then z
iB ()B= and 1z

kB ()A −= and either s : A B→ if z is odd, or

s : B A→ if z is even.

(Hence in over-links, s is directed from the base with the odd marker to the base with
the even marker).

B) Every position i in 1 ... mA A or 1 ... nB B is endpoint of exactly one link.
C) Links may not cross, i.e.

(i) If { }i k, and { }j l, are vertical links and i j< , then k l< .

(ii) If { }i k, is an under-link, and i j k< < , then j belongs to an under-

link { }j l, such that i l k< < .

(iii) idem for over-links

1 Hence the integer i denoting the position of iA in the domain is to be considered different

from the integer i denoting the position of iB in the codomain!

 Category Theoretical Semantics for Pregroup Grammars 245

Note that the empty set, denoted 1 , is a transition of empty domain and empty
codomain. The single over- and under-links are transitions and so is the vertical link

 A
 s
 B

where :s A B→ is a simple arrow. To simplify notation, we use :s A B→ both to
indicate the transition with domain A and codomain B , consisting of a unique
vertical link labelled s , and the orientation of this label s in some co-variant or
contra-variant copy of C .
A somewhat more involved example is

rs

A B B C C B A B C

 t

 D

s

B C

where s C B r B A t A D: , : , :→ → → and where the labels that are an identity of
simple types are omitted.
We define horizontal composition of transitions as juxtaposition. For example, if

:s C B→ and t A D: →

 A B B

s B B st t=η ε ε η t

 D

s

B C .

s t
ε ε =

ts

C B A D C

The examples above are obtained from one-link transitions by horizontal composition.
However, not all transitions can be obtained thus, a counter-example is

 C
ts

C B A D C .

Therefore it is convenient to consider sε and sη as operators, where sε applies to

transitions of codomain 1 and sη to transitions of domain 1. They are defined thus

Definition 2
For :s A B→ , :g Γ →1

1() :s g B AΓ →ε

is obtained from g by adding a new under-link from B to A labelled s .

246 A. Preller

For :s A B→ , 1:h Δ→

1() :s h B AΔ→η

is obtained from h by adding a new over-link from B to A labelled s .

For example,

 C s t
)ε (ε ε = C

ts

C B A D C ,

1()sη =

s

B C and t t (=ε ε 1) =
t

D A .

The context permitting, we continue to write sη for 1()sη , tε for 1t ()ε etc.

Horizontal composition and the operators sε and sη are sufficient to generate all
transitions from the one-link transitions. This can be captured by the following
construction rules:

Definition 3 (Normal form of transitions)
A transition in normal form is defined inductively as follows

(Unit)
1 1 normal: →1

(Horizontal composition)
normal normal

normal

f g

fg

: :
:

Γ Δ Λ Θ
ΓΛ ΔΘ

→ →
→

(Simple)
z z z normal() () ()s : A B→

(Contraction) 1

1

1z
z z

normal

normal

f

f()
() ()

s

:

() : A B

Γ
Γ−

→
→ε

(Expansion) 1

1

1z
z z

normal

normal

f

f()
() ()

s

:

() : B A

Δ
Δ−

→
→η

where (Simple), (Contraction) and (Expansion) are restricted to either s : A B→ and
z even or s : B A→ and z odd.

Lemma 1 (Normal form)

Every transition f : Γ Δ→ can be generated from 1 and the simple transitions with

the help of horizontal composition and the operators sε and sη .

Lemma 2 (Uniqueness)
If all 1’s are cancelled in the horizontal composition and parentheses are grouped to
the right, the horizontal normal form is unique.
The proof is straight forward as the example below may illustrate.

 Category Theoretical Semantics for Pregroup Grammars 247

ts

A B B C C B A D C

 t = () ()B st 1 1ε η C s t
)ε (ε ε .

 D

s

B C .

This representation of a transition in normal form does not involve vertical
composition. We show below that the set T(C) of transitions over C is closed
under (the yet to be defined) vertical composition. It will follow that T(C) is the free
compact strictly monoidal category generated by C .

There is an obvious candidate for vertical composition, as we see by “connecting”
transitions vertically:

 A A
 s
 B should become t s
 t

 C
C

and connecting

 A A A A A A A A

g = with f =

 A A ,
the connected graph

;g f = A A A A should become g f =

 A A A A .

Definition 4 (Vertical Composition)

Let f : Γ Δ→ and g : Δ Λ→ be transitions, denote g f; the graph obtained by

connecting f with g at Δ . Then g f is the graph obtained from g f; by
replacing each composite path with no proper extension by a single link through its
endpoints, labelled by the composition of the labels.

In the examples above, the labels of the links are identities, among them the

identity of A and the identity of A . Hence it is not obvious that successive labels
can always be composed. However, this will follow from the following lemma,
which also establishes that transitions are closed under vertical composition.

Lemma 3 (Combing)
Let f : Γ Δ→ and g : Δ Λ→ be transitions, then g f is a transition of domain
Γ and codomain Λ .

248 A. Preller

Proof: Use induction on the length m of the intermediary string Δ . If 0m = , then
Δ is empty, f has only under-links, g only over-links. Hence all paths in g f;

have length 1 and g f = g f; = gf . For the induction step, assume that Δ is
non-empty and that the property holds for all transitions connected at an intermediary

'Δ shorter than Δ . Note that every path of length at least 2 goes through a position
in Δ . In the following argument, we choose a section of a path through such a
position consisting of two or three consecutive links. This section will be called a
strand and be replaced by a single link, with the same endpoints. There are eight
different strands to be considered:

Case 1:
Suppose Δ has a position j such that f has a vertical link : js A B→ and g a

vertical link : jt B C→ .

 2AΓ Γ1 2AΓ Γ1

 s

(Strand 1) jBΔ Δ1 2 replaced by t s

 t

 CΛ Λ1 2 CΛ Λ1 2

Case 2 (Strand 2)-(Strand 7)
If Δ does not have such a position, assume first that g has at least one under-link.

Then there is a position j in Δ such that { }1j j, + is an under-link of g . Let

r B A: → be the label of this under-link, hence jB A= and 1jB B+ = . Let 'Δ be

obtained from Δ by omitting 1j jB B + and g' from g by omitting the link { }1j j, + .

Clearly, g' is a transition from 'Δ to Λ .

Next, consider the links { },i j and { }1j k,+ of f . Note that two consecutive

positions 1j j, + in Δ cannot simultaneously form an over-link of f and an under-

link of g . Indeed, the former would imply that the marker of jB is greater than the

marker of 1jB + , whereas the latter would imply the contrary. Hence, i and k are

both different from j and 1j + . We obtain f ' from f by omitting the two links

{ },i j and { }1j k,+ and adding the new link { },i k . For each strand, we verify that

the labels of { },i j , { }1j j, + and { }1j k,+ can be composed, providing thus the

label for { },i k . Then the maximal paths2 of g f; identify with the maximal paths of

2 i.e. paths which have no proper extension.

 Category Theoretical Semantics for Pregroup Grammars 249

g f'; ' . Hence by definition, ' 'g f g f= . The property follows then by induction
hypothesis.

Let s C B r B A t A D: , : , :→ → → .

 ...D C replaced by ...
t r s

D C .

(Strand 2) t s

r

A B

Note that the positions between D and C must be linked by under-links of f ,

defining thus a subtransition 3f of f which has codomain 1. Therefore

1 3 2f f t f sf= . Replacing the two vertical links by a single under-link between D

and C and leaving the other links of f unchanged we obtain a transition 'f from

Γ to 'Δ .

(Strand 3)

t s

D A B C... ... replaced by

t r s

D C .
 r

Note that the positions between D and A are linked by over-links in f and ditto

for the positions between B and C . Hence 'f is a transition from Γ to 'Δ .

 C C

(Strand 4) t s replaced by t r s
 ...

r

D A B ...D .

 D D

(Strand 5) t t r s()
 s replaced by

 ...
r

A B C ... C

 t

(Strand 6) s replaced by ()t r s

r

A B C D C D

250 A. Preller

 rs

(Strand 7) t replaced by ()rt r s

 r

r

C D A B rC D

Case 3:
Remains the case where g has no under-links. As we are in the case where no

position in Δ belongs both to a vertical link in g and to vertical link in f , the latter

must have over-links. Hence there is a position j such that { }1j j, + is an over-link

of f , i.e. if
q D C s C B r B A: , : , :→ → →

s

BC

(Strand 8) r q is replaced by

 ...A D ...

r s q

A D .

Note that the vertical composition of two transitions can be computed in time
proportional to the number of links in the transitions. Indeed, it suffices to follow a
maximal composite path exactly once, computing on the way the composite of the
successive labels.

Corollary
T(C) is a compact strictly monoidal category.
Proof: Vertical composition is clearly associative, the identity 1 :Γ Γ Γ→ consists

of the obvious vertical links through corresponding simple types. The label of the
link connecting i in the domain to i in the codomain is the identity of the simple
type iA . If the context permits, we write Γ instead of 1Γ . Then the equality (2.1)

 g f f g gfΛ Δ Θ Γ == , for f g,Γ → Λ Δ → Θ: :

is straightforward.
Compactness follows, if

A AA A A=ε η and A AA A A=ε η

holds. By (2.7), it is enough to verify this for all simple types A :

 A A A A

 A A A is “combed” to and A A A to

 A A A A .

 Category Theoretical Semantics for Pregroup Grammars 251

Proposition
T (C) is the free strictly monoidal compact category generated by C .
The proof is beyond the scope of this paper and can be found in [6].

The Combing Lemma is the categorical version of cut-elimination in compact
bilinear logic, established in [3]. Indeed, the categorical equality defines an
equivalence relation on proofs such that transitions are cut-free representatives of
equivalence classes. Besides providing a graphical representation of cut-free proofs,
the categorical result tells us more: not only can we derive from f : Γ Δ→ and

:g Δ Λ→ the existence of a :h Γ Λ→ , but also show that the new :h Γ Λ→ is

equivalent to ;g f . The axiomatisation of compact bilinear logic corresponding the
normal form of transitions is the following

(Unit)
1 1−

(Horizontal composition)
Γ Δ Λ Θ

ΓΛ ΔΘ
− −

−

(Simple)
z z() ()A B−

(Contraction)
1

1

1z z() ()A B

Γ

Γ−

−

−

(Expansion)
1

1

1 z z() ()B A

Δ
Δ−

−

−

where (Simple), (Contraction) and (Expansion) are restricted to the cases where either
A B→ and z even or B A→ and z odd.

The rule corresponding to vertical composition is

(Cut)
Γ Δ Δ Λ

Γ Λ
− −

−
.

Clearly, the inference rules of the systems S respectively S’ for compact bilinear
logic in [3] can be derived with the rules above and vice versa.

4 Example of a Semantic Interpretation

We sketch an interpretation of examples (1.1) and (1.2) into predicate logic without
explicitly defining the underlying algorithm. The idea behind the algorithm is to
process simultaneously syntactic and semantic content associated to words. The
algorithm will use semantical as well as syntactical types. Composition of transitions
realizes the passage from syntactic analysis to meaning. The category of semantical
transitions is generated from a multi-graph where two nodes may have more than one
edge between them in opposition to the partially ordered set of basic syntactical types.

252 A. Preller

For example, the semantical basic type e of entities3 may have the different arrows
:p e e→ , :h e e→ etc. where p is short for pictures , h for horses etc. That is

to say, the words of the dictionary are used as labels. The algorithm computes the
composition of the semantical transition and the trace of the syntactical transition and
transforms the result into a formula of predicate logic. We assume equality,
functional symbols and two sorts of constants or variables ,x y ,… and , , ...X Y . The

latter are to be interpreted as sets of individuals of the universe of discourse, the
former as singleton sets, i.e. as individuals. Proper names and count nouns are
interpreted by unary relational symbols, like mary, picture, horse, rose for Mary,
picture, horse, rose. A word with a compound type including the sentence type is
interpreted by a relational symbol. If the basic type reduces to π or ο , the whole
type corresponds to a functional symbol or constant, where the number of non-basic
simple types in the compound type gives the arity. Functional symbols are to be
interpreted as partially defined functions. For example

saw: 2s orπ , re se , saw(,) ; and: 2n n nr , re ee , and(,) ; of: 2 2n n or , re ee , of(,) .
The syntactical analysis

 Mary saw (pictures of horses) and roses

 = 1 2 2 2 2 2 2 2n (s o)c (n n o)c (n n n)c
rr rπ

Fig. 1

yields a semantical trace

rr re(e se)e (e e e)e (e e e)e

 s

Fig. 2

which is connected to the semantical declaration
The labels of the semantical declaration are found reading the words from left to right.
For the basic type in the word’s type, declare a constant and a new variable except in
the types of the connectors where the variable is omitted.4.

3 In a more sophisticated example, it may be necessary to use more than one semantic type for

entities.

4 Declaring the semantical type associated to the connector with a “ hard-wired” link r

of

e e e
without a variable has the same effect as replacing u(u=f(x) u)φ∃ ∧ () by f(x)φ() in first
order logic. I would like to thank Claudia Casadio for telling me about her insight that words
like relative pronouns have types with over-links which propagate equality of individuals.

 Category Theoretical Semantics for Pregroup Grammars 253

The logical structure of the expression is computed by “combing”, i.e. following
the paths from endpoint to endpoint, starting with the left upper simple type. To find
the corresponding logical expression, it suffices to read the labels in the order they are
composed.

r()e e s e e

 m x saw r Z
 p X h Y

 of and

r r r
e (e s e) e (e e e) e (e e e e)

 s

Fig. 3

r()

saw
m x and of p X h Y r Z

e e s e e

 s

Fig. 4

Reading the labels from left to right and replacing prefix notation by infix notation
where necessary we get

mary saw and of picture horse rose(x x (X Y Z (X Y Z) (, (,),))) () ()∧ ∧ ∧ ∧ .

Whereas, the second reduction of our example

 Peter saw pictures of (horses and roses)

 1 2 2 2 2 2 2 2n (s o)c (n n o)c (n n n)cr r rπ

Fig. 5

is connected to the same semantical declaration

r()e e s e e

 m x saw r Z
 p X h Y

 of and

rr r) (e (e s e) e(e e e e e e e) e

 s

Fig. 6

254 A. Preller

which combs to

r()

saw
m x of p X and h Y r Z

e e s e e

 s

Fig. 7

and hence is interpreted by

mary saw of and picture horse rose(x x X (Y Z (X Y Z) (, (, ,)))) () ()∧ ∧ ∧ ∧ .

5 Conclusion

In this paper, we have concentrated on the categorical properties of derivations with
pregroup grammars by embedding these derivations into the compact 2-category of
transitions. The categorical properties of transitions intervene in the computation of
the meaning associated to a derivation. The algorithm we have sketched has two
essential features: It adds a semantical transition to the derivation in linear time and
then uses the linear algorithm of categorical composition to compute the logical
formula associated to the analysed sentence. Hence the complexity of computing the
meaning(s) of a sentence remains that of finding the correct derivation(s). The
properties of such an interpreting algorithm depend essentially on the types associated
to words in the pregroup dictionary. The language fragments analysed so far involve
syntactical types similar to those of our example, but some standardisation of the
pregroup dictionaries may be necessary before a linear algorithm of discourse
representation via pregroup grammars becomes possible.

References

1. Joachim Lambek, Type Grammar revisited, in A. Lecomte et al., editors, Logical Aspects of
Computational Linguistics, Springer LNAI 1582, pp.1 –27, 1999

2. Samuel Eilenberg, Automata, Languages and Machines, vol. A and B, New York:
Academic Press, 1972 and 1976

3. Wojciech Buszkowski, Cut elimination for the Lambek calculus of adjoints, in Abrusci et al.
ed., Papers in formal linguistics and logic, Bologna: Bulzoni, 2002

4. Saunders Mac Lane, Categories for the working mathematician, Springer Verlag, New York
1971

5. Joachim Lambek, Bicategories in algebra and linguistics, in: T. Ehrhard et al., editors,
Linear Logic in computer science, Cambridge University Press 2004

6. Anne Preller, Joachim Lambek, Free compact 2-categories, rapport de recherche 11439,
LIRMM, 2004

Feature Constraint Logic and Error Detection
in ICALL Systems

Veit Reuer and Kai-Uwe Kühnberger

University of Osnabrück, Institute of Cognitive Science,
Katharinenstr. 24, 49069 Osnabrück, Germany

{vreuer, kkuehnbe}@uos.de

Abstract. In this paper, an extension of feature constraint logic is pre-
sented which allows the coding of errors in feature structures. This is
achieved by adding a designated feature to the feature logic with spe-
cial properties resulting in an expansion of the underlying feature logic.
The framework will be formally developed and applied in an ICALL sys-
tem that allows errors of learners of a foreign-language. Furthermore the
system provides an analysis of such errors.

1 Introduction

The recognition of errors made by foreign-language learners is a task that has
been tackled with same success using methods from Computational Linguis-
tics. Some advantages of intelligent computer-assisted language learning systems
(ICALL systems) which incorporate advanced error-recognition are summarized
below:

• An ICALL-system can give precise feedback about the momentary perfor-
mance of the learner.

• The analyses can be used for learner modeling and individual tutoring.
• Dialog-style exercises can be implemented (but need robust yet sensitive

analyses of ill-formed sentences in order to continue a dialog).

From a Computational Linguistics perspective, CALL can also be seen as an
interesting field to test its methods. In current research, two main aspects are
examined: One aspect concerns the usage of Computational Linguistics’ techno-
logy to analyze and interpret user input. A second aspect is the use of linguistic
resources such as (annotated) corpora and lexical databases for presenting rele-
vant information to language learners.

This paper describes some aspects of the error-recognition module of an in-
teractive ICALL-system for German. Using the system, the language learner
is invited to produce complete written sentences in small question-answering-
tasks. This setting challenges the learner to use language interactively in order
to enhance the development of the so-called communicative competence. Em-
phasis is put on the possibility of giving adequate feedback to the learner if a

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 255–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

256 V. Reuer and K.-U. Kühnberger

morpho-syntactically ill-formed sentence is encountered. As mentioned, for ex-
ample, in Menzel and Schröder [12] a program usually does not support both
requirements at the same time. That is, if free formed input is allowed, the sys-
tem is not able to do a detailed analysis of the input. On the other hand, if the
error-recognition capabilities are advanced enough to give satisfying feedback,
the choice of exercises is in most cases quite limited. Thus the main goal in devel-
oping an ICALL-system should be to provide a stimulating environment and to
give an adequate feedback. Preconditions for this are sensitive parsing and error
recognition, which are handled partially by using the method described below.

The plan for the paper can be summarized as follows: In Section 2, sev-
eral approaches to error recognition in feature structures are discussed and the
strengths and weaknesses are evaluated. Section 3 gives an informal and intuitive
idea of classical feature constraint logics and ideas of how to incorporate errors
in such frameworks by a modified unification procedure as the main structure
building process. Section 4 presents a classical formal account for representing
feature constraint logics. In Section 5, an expansion of feature constraint logics
is developed by adding a designated error feature, a substitution operation, and
a modified unification operation. Section 6 presents a practical application of the
framework developed in Section 5 in the context of an ICALL-system. Finally,
some concluding remarks in Section 7 are added.

2 Error Analysis

Two general strategies for error handling can be distinguished. First, there are
the so-called robust parsing methods. These try to continue parsing past a posi-
tion that cannot be handled by the grammar, without considering the type and
exact location of the error. The main purpose is to achieve a result for as much
of the input as possible. This usually means a result yielding the largest possible
chunks (e.g. Jensen et al. [10]). Second, “sensitive” strategies are being devel-
oped for specifically locating and analyzing errors in the input. With the help of
some type of correction method, the parsing process continues across the error
position and yields a complete description of the input, usually including the
position and the type of error. In a system aimed at both determining the gram-
maticality according to a given grammar and providing as much feedback about
an error as possible, only the second type of parsing method can be adopted.

There are two strategies for identifying errors: Either the grammar is ex-
tended with additional rules covering the various cases of erroneous input; or
the parsing algorithm itself is modified to allow for error recognition, so that
the grammar and lexicon need to cover “correct” language only. We call the
first concept “anticipation-based” and the second concept “anticipation-less”.
In the following we would like to discuss a few aspects of these two approaches
to error recognition. An example from Schwind [21] demonstrates one major
disadvantage of the first approach. The mal-rule in the phrase structure gram-
mar is specifically designed to describe an error a French native speaker might
make when learning German: this is to position the adjective after the noun in

Feature Constraint Logic and Error Detection 257

a noun phrase (le maillot jaune vs. das gelbe Trikot). However, speakers with
other mother tongues may produce other errors not covered by this approach.
New rules have to be added to the grammar for many other cases.1 This in turn
leads to enormous efficiency problems.

However, two advantages should be noted regarding the anticipation-based
approach. One is that the most efficient parsing algorithms can be chosen, as the
grammars typically are only extended but not changed in their form. A second
advantage is the possibility to be able to distinguish between ungrammatical
input on the one hand, and unparsable input on the other, where unparsable
input is meant to be input not covered by the grammar. In most cases this means
that the feedback to the learner can be stated with more confidence regarding
the location and the type of the error.

The anticipation-less approach transfers the load of recognizing and handling
errors in the input to the parsing algorithm. An example of this is the approach
presented in Menzel [13], where a “model-based” error-diagnosis is characterized
by its complexity. Specifically, in an agreement situation, every feature of every
lexical item is checked by an individual function in order to allow for a precise
localization of a possible error. One important advantage of anticipation-less
parsing is the recognition of certain errors “anywhere” if they can be identified
at a single position. For example, an agreement error between the subject and
a verb should be recognized not only if the subject is in the standard position
but also if for some reason the subject is displaced, e.g. by topicalization. A
second advantage is the possibility for an independent development of a grammar
and a lexicon. They can be engineered in a way such that they generate only
descriptions for correct sentences of a language. This also allows the integration
of “foreign” data, e.g. a large lexical database that may have been developed in
other contexts.

In order to decrease the processing load, the search space for finding a solu-
tion may be minimized in anticipation-less concepts. The evaluation in Lee et al.
[11] is an example (for a certain type of robust parsing): Using a phrase structure
grammar with only 192 rules, the parsing algorithm generates in average 12,000
edges per sentence in the chart with heuristics, and even 25,000 edges without.
A different approach is chosen in Schröder et al. [19] and Fouvry [8]. In these
two cases constraints are weighted. This allows for concomitant robust pars-
ing and a solution with the “smallest” error measure. Additionally, constraints
can be marked with a weight 0, which effectively makes them so-called hard
constraints. Solutions with this kind of constraint-clash are not considered for
further analysis. However, there is no evaluation whatsoever with respect to a
possible feedback to the learner about the error in these two approaches.

Our aim is to avoid the anticipation of errors in the grammar and to use
a “sound” grammar theory, namely LFG, which has been used successfully for
the description of various linguistic phenomena (e.g., for German, [3] and [1]).
Furthermore LFG is based on concepts that can easily be implemented in efficient

1 A similar case is described in Schneider and McCoy [18].

258 V. Reuer and K.-U. Kühnberger

parsers, and, as it is based on the functional/lexical perspective, it may be readily
understood by a language learner. Further indications for the usefulness of LFG
in a language learning scenario can be drawn from the use of LFG in language
descriptions such as Schwarze’s grammar for Italian [20], Thomann’s CALL-
program for Arabic [23], and Rypa and Feuerman’s ICALL-program CALLE
[16]. Note that even though other grammar theories are not excluded by these
arguments as such, there seems to be a general preference for LFG if any major
theory is used at all.

The structural elements of LFG are annotated PS-rules and complex feature-
structures (called f-structure in LFG), which mainly contain information about
the functional structure of a sentence. The f-structure is built up by using anno-
tations on the PS-rules as guidelines. An extended version of Earley-based chart
parsing which is known to be relatively fast, is used for processing PS-rules in
our approach. However, in this paper we will concentrate on the recognition of
errors in the f-structure. The unification module contains a list of features that
restricts the error location in a given f-structure mainly to agreement-features.
This corresponds to a two-valued constraint-ranking; either the values of corre-
sponding attributes may clash and the error location and values are stored in the
f-structure or the attributes are considered “hard” and the unification fails in
case of an error. Note that this approach differs from ideas such as those of Vogel
and Cooper [24] and Carpenter [4], that are also able to handle clashing values
but have no mechanism to store the information concerning which values actu-
ally did not match. However, in a language learning scenario this information is
crucial for adequate feedback to the learner.

3 Feature Constraint Logic and Modified Unification

In the last decades, feature constraint logics have become more and more im-
portant for applications in Computational Linguistics. Feature constraint for-
malisms are strongly related to unification-based grammars. Examples of corre-
sponding grammar formalisms that are based on constraint logics are HPSG [15],
LFG [2], [5], or Definite Clause Grammars [14]. Whereas HPSG and LFG are
grammar formalisms used in (computational) linguistics, Definite Claus Gram-
mars are important for programming languages (e.g. PROLOG). In particular
with respect to computational issues and the development of efficient algorithms,
feature constraint logics seem to have many advantages. In this paper, we focus
on the formal properties of the underlying feature logic in a LFG-like approach.

The idea to use feature constraint logics in LFG is to code grammatical ob-
jects like subject, accusative etc. as functional properties, called features. Because
features can be considered as attribute–value pairs, the corresponding represen-
tation of, for example, a sentence can be associated with a rooted feature graph
where the nodes represent abstract objects and the edges represent features.
Because of the fact that well-formedness constraints of the grammar strongly
restrict the possible feature graphs, a grammatically erroneous sentence cannot
be represented as a well-formed feature graph.

Feature Constraint Logic and Error Detection 259

We would like to show how a mechanism can be employed to locate and store
errors found in the so-called f-structure. In LFG, the f-structures contain mainly
agreement-information but also functional and subcategorizational information.
The first two types of features in particular can be used to identify certain types
of errors and to give feedback to the learner about these errors. The unification
algorithm has been changed to incorporate information about clashing values
in the f-structure in order to inform the learner precisely about his/her error.
The basic idea is to add a list of attribute-value pairs to every feature structure
resulting from a unification with mismatching atomic values.

Several suggestions for the treatment of clashing values were proposed. In
Schwind [21], plain disjunctive features are used to keep the clash-information.
However, all consequences using disjunctions must be addressed, e.g. the im-
possibility to use disjunctions in the lexicon for specifying lexical properties.
Furthermore, additional principles (“case filter”) must be applied to the result-
ing structures to select the most sensible one. Neither default unification such as
presented in Carpenter [4] nor an application of grammar checking as in S̊agvall
Hein [17] can be used in the context of language learning, where precise feedback
is asked for. In both cases, only one of the clashing values is retained in the fea-
ture structure. The crucial information about the error in the construction of the
sentence cannot be presented to the learner. Furthermore, there have been sev-
eral approaches to robust parsing within the HPSG framework such as Vogel and
Cooper [24], Fouvry [8], or Foster [6]. Vogel and Cooper’s, as well as Fouvry’s,
approach also suffers from the shortcomings mentioned above. It is not clear,
how the information about the clash can be kept in the feature-structure. More
importantly, Vogel and Cooper suggest a handling of the situation in case of
“structure-sharing”, by which “the logic of the resulting feature structure is not
well understood” [24–p. 213]. A similar problem is encountered in Foster’s con-
cept. Here, the clashing information is also integrated into the feature structure
as in our approach, however, the method adopted by Foster is not monotonic,
in contrast to our concept. Additionally, she deals only with agreement errors,
which would be a shortcoming in the language learning scenario. To summarize
these considerations: To our knowledge there have not been any proposals that
integrate the information about clashing values from unification into the result-
ing feature structure and maintain the desirable properties of feature logics such
as monotonicity.

4 Classical Feature Constraint Logic

4.1 Features and Constraints

The following development of classical feature constraint logic is relatively closely
related to the development in Smolka [22] and approaches mentioned in this
work. Although the following formal development is slightly more general as
needed for implementing LFG, we chose the relatively abstract account of feature
algebras to introduce feature constraint logic.

260 V. Reuer and K.-U. Kühnberger

We assume that a finite set Con of constants, a finite set Feat of features,
and an infinite set V ar of variables are given. The denotation of symbols is
defined as usual: constants are denoted by letters a, b, c, . . ., features by letters
f, g, h, . . ., and variables by letters x, y, z, . . . The following definition specifies a
feature algebra.

Definition 1. A feature algebra A is a pair 〈D, I〉 where D is a non-empty set
and I is an interpretation function defined on constants by I : Con→ D and on
features by I : Feat→ P(D ×D) such that the following conditions hold:

(i) If 〈a, b〉 ∈ I(f) and 〈a, c〉 ∈ I(f) then b = c
(ii) If I(a) = I(b) then a = b

(iii) For all a ∈ Con there is no d ∈ D such that 〈a, d〉 ∈ I(f)

The first condition specifies that features are interpreted as (partial) func-
tions, the second condition corresponds to the commonly used unique name
assumption for constants, and the third condition prohibits an application of
features to constants, i.e. constants are considered to be atomic.

For applications in computational linguistics and grammar theory, feature
graphs play an important role mainly because of their convenient diagrammatic
properties. The following definition makes this concept precise.

Definition 2. A feature graph is either a graph without edges, i.e. a pair 〈a, ∅〉
where a ∈ Con is the root of the graph or a graph with edges 〈x,E〉 where
x ∈ V ar is the root of the graph and E is a finite set of (feature–labeled) edges
of the form yfs where y ∈ V ar, f ∈ Feat, and s ∈ Con ∪ V ar such that the
following three conditions are satisfied:

(i) Edges are uniquely defined: If yfs ∈ E and yft ∈ E then s = t.
(ii) The graph is connected: If yfs ∈ E then E contains a path of edges

from the root x to y.
(iii) The graph is acyclic: If yfs ∈ E then there is no path of edges leading

from s to y.

According to Definition 2 a feature graph is a rooted, connected, acyclic, and
directed graph.2 The edges of a feature graph are labeled with features and the
nodes with variables or constants. Notice that we require that the set of edges
E is finite.

Subgraphs of a given graph G are defined as usual, namely as an embedding
of the subgraph into the matrix graph. Definition 3 makes this idea precise.

Definition 3. Given two graphs G and G′ where the root of G is x ∈ Con∪V ar,
G is called a subgraph of G′ iff there is a homomorphic embedding h : G → G′

such that: h(x) = x and for all edges yfs ∈ G : h(yfs) = yfs.

2 Alternative definitions of feature graphs allow cyclic graphs as well, compare for
example Smolka [22].

Feature Constraint Logic and Error Detection 261

Obviously, Definition 3 induces a partial order relation ≤ on subgraphs of a
given graph G′ by defining: G ≤ G′ if and only if G is a subgraph of G′. Notice
further that for every graph G′ and variable or constant x occurring in G′ there
is a uniquely defined maximal subgraph G of G′ with root x.

Following [22], the collection of all feature graphs can be used to define a
new structure called a feature graph algebra. It turns out that this feature graph
algebra is itself a feature algebra (compare Fact 5).

Definition 4. Assume a feature algebra A = 〈D, I〉 is given. A feature graph
algebra F is a pair 〈DA, IA〉 such that:

(i) DA is the set of all feature graphs
(ii) For a ∈ Con: IA(a) = 〈a, ∅〉

(iii) IA(f) = 〈G′, G〉 iff xfs ∈ G′ where x is the root of G′ and G is the
maximal subgraph with root s in G′

Fact 5. (Smolka) A feature graph algebra satisfies the properties of a feature
algebra.

Proof: Given a feature graph algebra F the required conditions (ii) and (iii)
of Definition 1 are clearly satisfied. For condition (i) of Definition 1 consider
IA(f) = 〈G′, G1〉 and IA(f) = 〈G′, G2〉. Assume G1 �= G2. Because G1 and
G2 are maximal subgraphs and because of the fact that maximal subgraphs are
uniquely defined, the root s1 of G1 and the root s2 of G2 are not equal. Then,
the corresponding feature graph G′ does not satisfy condition (i) of Definition
2. Hence, we have a contradiction. Therefore, G1 = G2. q.e.d.

Usually feature graphs are considered to be preordered by a subsumption re-
lation 0 determining the amount of information coded in the feature graph. The
importance of the subsumption relation 0 can be traced back to the fact that 0
is used for defining the unification operation on feature graphs. Following Smolka
[22] we want to build this subsumption relation bottom up by defining first sub-
sumption on feature algebras and extending this to feature graphs. Definition 6
specifies a subsumption preorder 0 on a feature algebra A.

Definition 6. Assume A = 〈D, I〉 is a feature algebra. A subsumption preorder
0 on A is a preorder defined on D satisfying the following property: a 0 b iff
there is a partial mapping φ : D → D such that the following conditions (i) –
(iii) hold:3

(i) For all c ∈ Con it holds φ(I(c)) = I(c)
(ii) If f ∈ Feat, d ∈ D, and (I(f))(d) as well as φ(d) are defined, then

φ[(I(f))(d)] and (I(f))(φ(d)) are defined such that (I(f))(φ(d)) =
φ[(I(f))(d)]

(iii) φ(a) = b

3 According to Definition 1 a feature f is interpreted as a (partial) function. We write
(I(f))(d) as the result of mapping d ∈ D under I(f) in the feature algebra A.

262 V. Reuer and K.-U. Kühnberger

The intuition of Definition 6 is to make the concepts of generality and speci-
ficity precise in the following sense: if a 0 b then a is more general than b
(or b is more specific than a). Notice that 0 is not a partial order on D, be-
cause it does not hold in general that if a 0 b and b 0 a then a = b. A
natural generalization of Definition 6 concerns paths. Given a feature alge-
bra A = 〈D, I〉 we define a path p as a concatenation of features such that
p = fn ◦ fn−1 ◦ · · · ◦ f1. Notice that features are partial functions, hence paths
are crucially compositions of functions, i.e. I(p) is the composition of I(fn), . . . ,
I(f1). If p is empty, then the interpretation I(p) is the identity function on D.
Hence, the interpretation of paths is recursively induced by the interpretation of
features: (I(p))(a) = b iff 〈a, b〉 ∈ I(p). As already mentioned above, Definition
6 can similarly be extended to paths: if φ : D → D is a partial homomorphism
relative to a given feature algebra A = 〈D, I〉, d ∈ D, and p is a path, then
it holds: if φ(d) and (I(p))(d) is defined, then φ[(I(p))(d)] and (I(p))(φ(d)) is
defined and φ[(I(p))(d)] = (I(p))(φ(d)).

4.2 The Subsumption Relation on Feature Graph Algebras

Using the machinery developed in Subsection 4.1 we give a characterization of
the subsumption preorder 0 on a feature graph algebra.

Fact 7. (Smolka) Assume G = 〈xG, EG〉 and G′ = 〈xG′ , EG′〉 are feature
graphs. Using Definition 6 a preorder on feature graphs can be induced: G 0 G′

iff there exists a mapping ψ : V arG ∪ConG → V arG′ ∪ConG′ such that it holds:

(i) ψ(xG) = xG′

(ii) For all a ∈ ConG : ψ(a) = a
(iii) If xfs ∈ EG then: ψ(x)fψ(s) ∈ EG′

Proof: “⇒” Assume G and G′ are given according to the Fact. We define a par-
tial endomorphism φ : D → D according to Definition 6 such that φ(G) = G′.
We define ψ : V arG ∪ ConG → V arG′ ∪ ConG′ such that every element s ∈
V arG ∪ConG is mapped to ψ(Gs) where Gs is the maximal subgraph generated
by s. Condition (i) is satisfied because it holds: if xG is the root of G, then ψ(xG)
is the root of G′ since φ(GxG

) = G′
ψxG

. Condition (ii) is obvious and condition
(iii) holds because of the following reasoning provided that xfs ∈ EG holds:

G′
ψ(s) = φ(Gs) = φ[(I(f))(Gx)] = (I(f))(φ(Gx)) = (I(f))(G′

ψ(x))

Hence, ψ(x)fψ(s) ∈ EG′ .

“⇐” Assume ψ is given as above. We need to show that a partial endomorphism
φ : D → D satisfies the conditions in Definition 6. We define φ as follows:
φ(Gx) = G′

ψ(x). Then it holds: φ(G) = φ(Gx) = G′
ψ(x) = G′. Therefore

φ(I(x)) = I(x). We need to show that φ[(I(f))(Gx)] = (I(f))(φ(Gx)) for given
and defined f . Assume xfs ∈ EG, then ψ(x)fψ(s) ∈ EG′ . Hence:

Feature Constraint Logic and Error Detection 263

φ[(I(f))(Gx)] = φ(Gs) = G′
ψ(s) = (I(f))(G′

ψ(x)) = (I(f))(φ(Gx)). q.e.d.

Although the presented classical account suffices to give grammar theories
such as LFG a sound formal basis, problems arise if we try to apply this frame-
work to ICALL systems. The reason is that such systems cannot deal with errors.
The following section presents a solution to this problem by the introduction of
a designated error feature err with some special properties.

5 An Extension of Feature Constraint Logic for Error
Recognition Systems

5.1 Introductory Example

In this subsection, we would like to present an intuitive example prior to the
introduction of the formal specifications of the extended approach. Consider the
sentence “Ich habe jetzt eine Unfall gesehen”. The sentence is almost correct ex-
cept for the agreement between the determiner and the noun in the object NP.
“gesehen” calls for an Accusative object however “Unfall” is Accusative Mas-
culin whereas “eine” is Accusative Feminin. As mentioned above the resulting
structure generated by an ICALL system should ideally describe a corrected ver-
sion of the sentence without neglecting the error, i.e. the clashing feature values.
Figure 1 shows the (simplified) corresponding lexical information for “eine” and
“Unfall” in a LFG-style representation.

“eine” “Unfall”⎡
⎢⎢⎢⎣

def : –

gen : f

num : sg

case : acc

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

pred : ‘ACCIDENT’

gen : m

num : sg

case : acc

⎤
⎥⎥⎥⎦

Fig. 1. Lexical entries for “eine” and “Unfall”

Notice that the words “eine” and “Unfall” can also have different properties
which we ignore here. The unification of these two feature structures should
fail in the normal case because the values of the “gen”-feature clash. In our
approach however the clash of these atomic values leads to the insertion of a
designated feature named “err” containig the relevant information about the
clash as elements of a set. Figure 2 demonstrates the mechanism. The resulting
feature structure is the description of the phrase “eine Unfall” in object position
including the information that a clash between values of a feature took place.
In order to build the resulting feature structure the parsing continues as usual,
however the error is encoded in the structure itself and can be used for feedback
to the user.

264 V. Reuer and K.-U. Kühnberger

⎡
⎢⎢⎢⎣

def : –

gen : f

num : sg

case : acc

⎤
⎥⎥⎥⎦�err

⎡
⎢⎢⎢⎣

pred : ‘ACCIDENT’

gen : m

num : sg

case : acc

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

def : –

gen : f

num : sg

case : acc

pred : ‘ACCIDENT’

err :
{

[gen : m]
}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2. Example of a unification with mismatching values for the gender feature

5.2 Adding an Error Feature to Feature Constraint Logic

In order to adjust the previously defined feature constraint logic to sensitive error
recognition, we propose to integrate a designated additional error feature denoted
by err. This feature has certain different properties in comparison to standard
features of the classical theory. Since the unification process as the main structure
building process should entirely be based on the definition of the subsumption
relation we start off by providing a suitable definition of substitution and the
relevant modifications of Fact 7.

Definition 8. Assume a feature graph G⊕ extended by a designated feature err
is given where err is defined by the nodes x and {[f1 : y1], . . . , [fn : yn]}. A
substitution Θ on G⊕ is a contravariant pair of substitution functions Θ =
〈Θ∧

i , Θ
∨
i 〉 such that the following two conditions hold:

(i) Θ∧
i substitutes xi by yi, provided that i ∈ {1, . . . , n}, xfixi ∈ G⊕,

xi ∈ Con, and yi ∈ Con.
(ii) Θ∨

i substitutes yi by xi, provided that i ∈ {1, . . . , n}, xfixi ∈ G⊕,
xi ∈ Con, and yi ∈ Con.

The intuition of Definition 8 is that an application of a substitution to a fea-
ture graph including a non-empty error feature err is a bidirectional substitution
of the value of a feature f in err by a value of the feature f occurring in the
feature graph elsewhere.

The subsumption relation 0 needs to be slightly modified in order to in-
corporate substitutions. Because the subsumption relation 0 is defined on the
domain D of a feature algebra A we use Θ to induce a substitution operation
Θ̄ = 〈Θ̄∧, Θ̄∨〉 on D by the following two conditions (a) and (b):

(a) Θ̄∧ substitutes I(xi) by I(yi) iff Θ∧ substitutes xi by yi.
(b) Θ̄∨ substitutes I(yi) by I(xi) iff Θ∧ substitutes yi by xi.

Using Θ̄ we can reformulate Definition 6 for feature structures including an
error feature err.

Definition 9. Assume A = 〈D, I〉 is a feature algebra including a designated
error feature err. A subsumption preorder 0 on A is a preorder defined on D

Feature Constraint Logic and Error Detection 265

such that it holds: a 0 b iff there is a partial mapping φ : D → D such that the
following conditions hold:

(i) For all c ∈ Con it holds φ(I(c)) = I(c)
(ii) If f ∈ Feat \ {err} and (I(f))(d) and φ(d) are defined, then there

exists a (possible empty) substitution Θ̄ such that Θ̄[φ[(I(f))(d)]]
as well as (I(f))[Θ̄(φ(d))] are defined and the following equation holds:
Θ̄[φ[(I(f))(d)]] = (I(f))[Θ̄(φ(d))]

(iii) φ(a) = b

Given the substitution operation Θ of Definition 8 and the definition of sub-
sumption according to Definition 9 we can extend Fact 7 to feature graphs
including error features as follows:

Fact 10. Assume G⊕ = 〈xG⊕ , EG⊕〉 and G′
⊕ = 〈xG′

⊕ , EG′
⊕〉 are feature graphs

extended by designated error features err1 and err2, respectively. The feature
err1 is defined by the nodes z and {[f1 : y1], . . . , [fn : yn]} and the feature err2
is defined by the nodes z′ and {[f ′1 : y′1], . . . , [f

′
m : y′m]}. A preorder on feature

graphs is induced by: G⊕ 0 G′
⊕ iff there exists a mapping ψ : V arG⊕ ∪ConG⊕ →

V arG′
⊕ ∪ ConG′

⊕ such that it holds:

(i) ψ(xG⊕) = xG′
⊕

(ii) For all a ∈ ConG⊕ : ψ(a) = a
(iii) If xfs ∈ EG⊕ then: ψ(x)fψ(s) ∈ EG′

⊕
(iv) If xfs ∈ EG⊕ , ψ(x)fs′ ∈ EG′

⊕ , and ψ(x)fψ(s) �∈ EG′
⊕ then there

exists a substitution Θ on G′
⊕ such that ψ(x)fΘ(ψ(s)) ∈ EG′

⊕ and
furthermore: {y1, . . . , yn} ⊆ Θ[{y′1, . . . , y′m}]

Proof: The properties (i)-(iii) are similar to Fact 7. Condition (iv) requires that
there is a substitution replacing a feature by a member of the error feature in
order to establish the subsumption relation and the error list of G⊕ is included
in the error list of G′

⊕ after the application of the substitution Θ. It is straight-
forward to show that this is induced by Definition 9. q.e.d.

Notice that the definition of substitution is restricted to the application of
Θ to features with constants as values, therefore substitutions need not be ex-
tended to paths in constraint feature graphs. Nevertheless another extension is
straightforward. This concerns multiple substitutions on feature graphs. Pro-
vided that argument-value pairs are disjoint multiple substitutions are simply
iterated applications of the involved substitutions Θ1, . . . Θn.

5.3 Using Substitutions for Unification

In this subsection, we want to use feature structures extended by an error fea-
ture err for unification. Unification should be defined as usual based on the
subsumption order. However the following issues need clarification:

266 V. Reuer and K.-U. Kühnberger

• In order to make the unification process homogeneous the building of equiv-
alence classes of feature graphs is necessary.

• Classically, two inconsistent feature graphs cannot be unified. In our ap-
proach, two inconsistent feature graphs can be unified by incorporating the
inconsistent information in the designated feature err.

• In a unification process, the union of the error lists of two feature graphs
needs to be computed (modulo substitutions).

Concerning the first point we define an equivalence relation on feature graphs,
collapsing feature graphs that subsume each other in an equivalence class.

Definition 11. Given a feature graph algebra F , an equivalence relation ∼ on
feature graphs is defined as follows:

G⊕ ∼ G′
⊕ ⇔ G⊕ 0 G′

⊕ ∧ G′
⊕ 0 G⊕

We denote the equivalence class of a feature graph G⊕ with [G⊕]∼. Clearly
Definition 11 can be used to define a modified subsumption relation 0∼ that
induces a partial order relation on equivalence classes of feature graphs. More
formally we define:

[G⊕] 0∼ [G′
⊕] ⇔ G′

⊕ 0 G⊕
The modified subsumption relation 0∼ will be used for the modified unifi-

cation of two feature graphs. The following Fact 12 specifies some properties of
the relation 0∼.

Fact 12. Given a feature graph algebra F = 〈DB, IB〉 with error feature err the
following claims hold:

(i) The subsumption relation 0∼ is reflexive, antisymmetric, and
transitive, i.e. it induces a partial order relation.

(ii) For every pair of feature graphs [G⊕] and [G′
⊕] the greatest lower

bound [G⊕] ([G′
⊕] exists.

Proof: (i) Clearly [G⊕] 0∼ [G⊕] holds, hence 0∼ is reflexive. Transitivity fol-
lows easily by reducing 0∼ to 0. For antisymmetry assume that [G⊕] 0∼ [G′

⊕]
and [G′

⊕] 0∼ [G⊕]. Then it must also hold: G⊕ 0 G′
⊕ as well as G′

⊕ 0 G⊕ by the
definition of 0∼. But then, both feature graphs are in the same equivalence class
by Definition 11: G⊕ ∈ [G⊕] and G′

⊕ ∈ [G⊕]. Hence, antisymmetry holds as well.

(ii) Assume two feature graphs [G⊕] and [G′
⊕] are given. Consider a feature

graph [Ḡ⊕] specified by the following properties:

• [Ḡ⊕] contains all edges xfs that are occurring in [G⊕] and [G′
⊕].

• Each edge xfs that occurs either in [G⊕] or in [G′
⊕] is also in [Ḡ⊕].

• If there is an edge xfs ∈ [G⊕] and an edge xfs′ ∈ [G′
⊕] and s �= s′ then

xfs ∈ Ḡ⊕ and [f : s′] is written in the error list of Ḡ⊕.
• [Ḡ⊕] does not contain any other edges, values, or constants.

Feature Constraint Logic and Error Detection 267

Obviously [Ḡ⊕] is a lower bound of both feature graphs [G⊕] and [G′
⊕]. Assume

[H⊕] is an arbitrary lower bound of [G⊕] and [G′
⊕]. If [H⊕] contains a feature

g or a value s that is not contained in [Ḡ⊕], then [H⊕] cannot be greater than
[Ḡ⊕]. If all features and values are occurring in both feature graphs [Ḡ⊕] and
[H⊕], then by substitution both graphs subsume each other and therefore are in
the same equivalence class. Hence [Ḡ⊕] is the greatest lower bound of [G′

⊕] and
[G⊕]. q.e.d.

We will write [D]B for set of all equivalence classes of feature graphs relative
to a given feature algebra B including the designated err feature.

Corollary 13. The structure 〈[D]B,0∼〉 is a semilattice.

Proof: Follows directly from Fact 12. q.e.d.

The unification of two feature graphs can now be considered as the compu-
tation of the greatest lower bound of the two graphs with respect to the partial
order relation 0∼.

Definition 14. The unification of two feature graphs [G⊕] and [G′
⊕] is defined

as the greatest lower bound [G⊕] ([G′
⊕] in the structure 〈[D]B,0∼〉.

The unification operation defined in Definition 14 corresponds exactly to the
usual definition of unification induced by the modified subsumption relation 0∼
resulting in a partially ordered structure 〈[D]B,0∼〉.

A remark concerning structure sharing should be added: As already men-
tioned in [24], the introduction of structure sharing may cause some difficulties,
because of the propagation of the error to many feature value pairs. In our ap-
proach, the substitution Θ applied to a structure shared object f : [1]a would
iteratively be applied further to all feature-value pairs that are coreferenced with
f : [1]a. By application of a substitution Θ the indices are not mapped into the
error list. Rather indices are strictly connected to the corresponding feature.

With the proposed formal machinery we can handle occurring clashes in fea-
ture structures as well as the storing and subsequent analysis of the information
contained in the extended feature structure. The following section roughly de-
scribes a scenario for an application.

6 Practical Application

In order to assess the value of the proposed mechanism, the annotated Heringer-
Corpus [9] containing 7107 sentences with errors produced by learners of Ger-
man as a foreign language was analyzed with respect to frequently occurring
error types. Note that the Heringer-Corpus in general does not only include
morphosyntactic errors, but also orthographic and morphological errors. The
analysis showed that the distribution of morphosyntactic errors is strongly lim-
ited to certain positions and error types, e.g. missing prepositions account for

268 V. Reuer and K.-U. Kühnberger

only 1.5% of all errors and may be neglected in a first approach. With regard
to feature structures this means that the occurrences of errors can be limited to
features which actually make sense to a language learner: “Classical” features
such as Case, Number, and Gender, but also features like Auxiliar Type and for
German adjective agreement the feature Inflection Type. Certain other features
may not be allowed to fail as they are probably less of a linguistic nature but
build in to “streamline” the grammar.

The analysis of error types further revealed that around 35% of all errors
should be dealt with inside the feature structure in a LFG-type analysis. In
an evaluation 75 sentences with morphosyntactic errors were randomly cho-
sen from the Heringer-Corpus and another 75 were collected from trials with
the mentioned ICALL-system. These sentences were manually error-tagged and
contained 96 errors which should be recognized in the f-structure of the analysis.

Table 1. Evaluation of errors in f-structure (correct / a.o. / none / fail)

Error-Type Heringer + ICALL Total

Agreement/Government
with/in Subject 11 / 3 / 4 / – 18
with/in Object 17 / 6 / 3 / 1 27
with/in Prep.-Object 20 / 1 / 1 / 3 25

POS-error – / – / 2 / 1 3
Verb form 11 / – / 2 / – 13
Auxiliar 9 / – / – / 1 10

Total 68 / 10 / 12 / 6 96
% 71 / 10 / 13 / 16 100

As Table 1 shows, 68 errors were correctly identified by the proposed mech-
anism compared to the manual tagging with a very simple preference scheme
preferring the result with less clashes. 10 errors were identified among other non
preferred ones with an identical error measure. For 12 errors the resulting f-
structure with the least clashes did not show the expected error and for 6 errors
the analysis failed because of either an arbitrary threshhold of 20,000 edges in
the chart or because a final edge could not be generated. As the grammar was de-
signed to cover the correct versions of the sentences following [7], no false positive
occurred. In summary 71% of the errors were identified correctly and another
10% were identified among others which shows the value of our apporach.

As an example for feedback generation consider again the German sentence
“Ich habe jetzt eine Unfall gesehen”. The f-structure in Figure 3 is a highly ab-
breviated result at the S-node of the actual parsing process. In order to determine
which concrete words are affected by the feature mismatch the tree has to be tra-
versed down to the node marked with the annotation “obj”. In the current case
all words below this node need to be examined with the features affected by the
mismatch. As it turns out “eine” has the feature combination [gen : f, num : sg,
case : acc] whereas “Unfall” has the features [gen : m, num : sg, case : acc]. This

Feature Constraint Logic and Error Detection 269

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pred : ’SEHEN
〈
subj, obj

〉
’

subj :
[
pred : ’PRO’

]

obj :

⎡
⎢⎢⎣

gen : f

pred : ’ACCIDENT’

err :
{

[gen: m]
}

⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 3. Feature structure including err feature

can then be reported to the learner in an extensive message stating that there is
an error in the Object NP, namely a mismatch in Gender between the determiner
“eine” being Feminine and the noun “Unfall” being Masculine. A correction of
the phrase would need, first, a heuristics in order to determine which lexical item
needs to corrected (in this case the determiner) and, second, a new lookup in
the lexicon for a determiner matching all relevant features except for the gender
feature. Note that straight forward correction strategies for a substantial amount
of cases cannot easily be determined as shown e.g. for German in [13].

7 Conclusions

In this paper, we have shown that an extension of constraint feature logics can be
achieved by adding a designated error feature err and a substitution Θ defined
on feature graphs such that errors can be homogeneously stored and tracked.
By defining a modified subsumption relation inducing a partial order on equiv-
alence classes of feature graphs a straightforward definition of unification can
be achieved storing all information about the clash. This is motivated by ap-
plications of feature grammars for ICALL systems where error detection, error
analysis, and error feedback are essential for the language learner. On the practi-
cal side there is a natural extension to grammar checking systems. Furthermore
we believe that the approach can be used for the modeling of robust parsing
mechanisms of humans in a formally sound manner.

References

1. Berman, J.: Clausal Syntax of German. CSLI Publications, Stanford (2003)
2. Bresnan, J.: Lexical-Functional Grammar. Oxford: Blackwell Publisher (2001)
3. Butt, M., King, T. H., Niño, M., Segond, F.: A Grammar Writer’s Cookbook. CSLI

Publications, Stanford (1999)
4. Carpenter, B.: Skeptical and Credulous Default Unification with Applications to

Templates and Inheritance. In: Briscoe, T., Copestake, A., Paiva, V. (eds.): Inher-
itance, Defaults and the Lexicon. Cambridge University Press, Cambridge (1993)
13–37

5. Dalrymple, M., Kaplan, R. M., Maxwell, J. T., Zaenen, A. (eds.): Formal Issues in
Lexical-Functional Grammar, CSLI Publications, Stanford (1995)

270 V. Reuer and K.-U. Kühnberger

6. Foster, J.: A Unification Strategy for Parsing Agreement Errors. In: Pilière, C.
(ed.): Proceedings of the 5th ESSLLI 2000 Student Session, Birmingham (2000)

7. Foster, J.: Parsing Ungrammatical Input: An Evaluation Procedure. In: Proceed-
ings of LREC 2004, Lisbon (2004) 2039–2042

8. Fouvry, F.: Constraint relaxation with weighted feature structures. Papers from
IWPT2003, 8th International Workshop of Parsing Technologies, Nancy (2003)

9. Heringer, H. J.: Aus Fehlern lernen. Augsburg (1995) – CD-ROM for Win9x/NT
10. Jensen, K., Heidorn, G. E., Miller, L. A., Ravin, Y.: Parse Fitting and Prose Fixing:

Getting Hold on Ill-formdness. Computational Linguistics 9(3-4) (1983) 147–160
11. Lee, K. J., Kweon, Cheol J., Seo, J., Kim, G. C.: A Robust Parser Based on

Syntactic Information. In: Proceedings of the 7th Conference of the European
Chapter of the Association for Computational Linguistics (EACL), Dublin (1995)
223–228

12. Menzel, W., Schröder, I.: Constraint-based Diagnosis for Intelligent Language Tu-
toring Systems. Fachbereich Informatik, Universität Hamburg, Report Nr. FBI-
HH-B-208-98 (1998)

13. Menzel, W.: Modellbasierte Fehlerdiagnose in Sprachlehrsystemen. Niemeyer,
Tübingen (1992)

14. Pereira, F., Warren, D.: Definite clause grammars for language analysis – a survey
of the formalism and a comparison with augmented transition networks. Artificial
Intelligence 13 (1980) 231–278

15. Pollard, C., Sag, I.: Head-Driven Phrase Structure Grammar. University of Chicago
Press, Chicago (1994)

16. Rypa, M., Feuerman, K.: CALLE: An Exploratory Environment for Foreign Lan-
guage Learning. In: Holland, V. M., Kaplan, J. D., Sams, M. R. (eds.): Intelligent
Language Tutors, Earlbaum, Mahwah, NJ (1995) 55–76

17. S̊agvall Hein, A.: A Grammar Checking Module for Swedish. Uppsala University,
Uppsala (1998) – SCARRIE Deliverable 6.6.3

18. Schneider, D., McCoy, K. F.: Recognizing Syntactic Errors in the Writing of Second
Language Learners. In: Proc. 17th Int. Conference on Computational Linguistics
(COLING), Montreal (1998) 1198–1204

19. Schröder, I., Menzel, W., Foth, K., Schulz, M.: Modeling Dependency Grammar
with Restricted Constraints. In: T.A.L., 41(1) (2000) 113–142

20. Schwarze, Ch.: Grammatik der italienischen Sprache. Niemeyer, Tübingen (1995)
21. Schwind, C.: Sensitive Parsing: Error Analysis and Explanation in an Intelligent

Language Tutoring System. In: Proc. 12th Int. Conference on Computational Lin-
guistics (1988) 608–613

22. Smolka, G.: Feature Constraint Logics for Unification Grammars, Journal of Logic
Programming 12 (1992) 51–87

23. Thomann, J.: LFG as a Pedagogical Grammar. In: Proceedings of LFG02, Athens
(2002) 366–372

24. Vogel, C., Cooper, R.: Robust Chart Parsing with Mildly Inconsistent Feature
Structures. In: Schöter, A., Vogel, C. (eds.): Nonclassical Feature Systems Vol. 10.
Edinburgh University (1995) 197–216

Linguistic Facts as Predicates over
Ranges of the Sentence

Benôıt Sagot

INRIA-Rocquencourt, Projet Atoll,
Domaine de Voluceau, Rocquencourt B.P. 105,

78 153 Le Chesnay Cedex, France

Abstract. This paper introduces a novel approach to language process-
ing, in which linguistic facts are represented as predicates over ranges of
the intput text, usually, but not limited to, ranges of the current sentence.
Such an approch allows to build non-linear analyses with a polynomial
parsing complexity that take into account simultaneously and with the
same technical status morphological, syntactical and semantical proper-
ties, this list being non limitative. Classical analyses, such as constituency
trees, dependency graphs, topological boxes and predicate-arguments se-
mantics are then obtained as partial projection of a complete analysis.
The formalism presented here is based upon Range Concatenation Gram-
mars (hereafter RCG), and has been successfully implemented, thanks to
a previously existing RCG parser and a syntactico-semantical grammar
for French.

1 Introduction

The definition of an adequate formalism for natural language processing consists
in the search of an optimal balance between linguistic validity and computational
efficiency. Moreover, a newly defined formalism can be considered interesting
only if it is really implemented, with a complete parser and a large-coverage
grammar for an example language, and if it shows interesting properties that
are not present in other formalisms, or at a more expensive computational cost.

In this paper, we introduce a new formalism that, we think, has all the
above-mentioned properties. This formalism relies on the hypothesis that lin-
guistic properties are best described as predicates over continuous ranges of
the input sentence1 or of a bounded amount of extra tokens (e.g. contextual
syntagms2). Range Concatenation Grammars (hereafter RCGs), introduced by
Boullier, provide a appropriate basis to develop such a formalism. In the remain-
der, we will present RCGs and their most important properties. Then we will

1 In itself this idea is not new, and has been used for example in Datalog grammars [1]
or in the constraint logic programming implementations of Property Grammars [2].
However, as made clear later, our formalism relies also on three fundamental prop-
erties of RCGs: range concatenation, non-linearity and parsing time polynomiality.

2 This possibility, already implemented, will not be treated in this paper.

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 271–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

272 B. Sagot

introduce our formalism, called Meta-RCG, whose grammars can be converted
into RCGs. Finally we will present a fragment of our grammar for French through
two examples, in order to show how morphological, syntactical and semantical
properties interact continuously with each other, leading to global analyses from
which classical analyses (constituency tree, dependency graph, topological boxes,
predicate-arguments semantics) can be extracted.

It is worth saying that one of the most important motivations for this work is
to develop a formalism in which the two following major constraints are satisfied:

– Morphology, syntax, and, more originally, lexical semantics (and if possible
more general semantics) are dealt with simultaneously during parsing; in par-
ticular, there must be no artificial boundary between a syntactic backbone,
syntactic features (or decorations) and lexical semantics.

– Parsing must be computationally tractable, and we make the hypothesis that
we can assume a polynomial parsing time.

We discuss these hypotheses more deeply at the beginning of section 3.

2 Range Concatenation Grammars

Range Concatenation Grammars (RCGs) have been introduced by Boullier (see
for example [3], and applications thereof in [4]). They defined a class of languages,
Range Concatenation Langages (RCLs), that covers exactly PTIME, the class
of all languages recognizable in deterministic polynomial time. Therefore, RCGs
are more powerful than all Mildly Context-Sensitive formalisms, such as Linear
Context-Free Rewriting Systems (LCFRS) or Multi-Component Tree-Adjoining
Grammars (MC-TAGs), while remaining computationally tractable. We shall
now define formally RCGs, following [3].

2.1 Positive RCGs

A positive RCG is a 5-tuple G = (N,T, V, P, S) in which:

– N is a finite set of predicate names,
– T is a finite set of terminal symbols,
– V is a finite set of variable symbols such as T ∩ V = ∅,
– S ∈ N is the axiom,
– P is a finite set of clauses, which are defined hereafter.

A clause C has the form ψ0 → ψ1 . . .ψj . . .ψm, where m ≥ 0 and each ψj is a
predicate of the form A(α1, . . . , αi, . . . , αp), where p ≥ 1 is its arity, A ∈ N , and
each αi is an argument of A. Each argument αi of A has the form X1 . . .Xl . . .Xq,
where each Xl is in V ∪ T . The left-hand part of C is ψ0, its right-hand part is
ψ1 . . .ψj . . .ψm. The predicates of the right-hand side form a set of predicates,
which means that order does not matter and that duplicating a predicate is
useless. In the following, we will abusively denote a predicate by its name, thus

Linguistic Facts as Predicates over Ranges of the Sentence 273

speaking of the predicate A. The arity of the axiom has to be 1, and the arity of a
predicate A is fixed. We call A-clause a clause whose left-hand side predicate is A.
We define the arity of an A-clause by the arity of A, and the arity of a grammar
by the maximal arity of its predicates. An RCG of arity k is a k-RCG.

As said before, the definition of a language by an RCG relies on the notion
of range of the input string. Given a string w = a1 . . . an of terminal symbols
(w ∈ T ∗), each pair of integers (i, j) such as 0 ≤ i ≤ j ≤ n is called a range of w
and is denoted 〈i..j〉w or i..j if w can be omitted, i and j being respectively the
lower and upper bound of the range, and j−i its size. If i = j, the range is empty.
Two ranges are equal if and only if their lower and upper bounds are respectively
equal3. A range 〈i..j〉w corresponds to a substring of w, namely ai+1 . . . aj . The
concatenation of two ranges i..j and k..l is defined if and only if j = k and is in
this case the range i..l.

Variable symbols and terminal symbols denote ranges. A terminal symbol
t denotes a range of length 1 corresponding to a substring of w that is the
symbol t. The concatenation XY of two variable or terminal symbols X and Y
(X,Y∈ V ∪ T) denotes the range resulting from the concatenation of the ranges
denoted respectively by X and Y, and is therefore defined if and only if these
ranges can be concatenated. We often (abusively) denote by the range X, where
X is a variable symbol, the range that is denoted by X.

Given w ∈ T ∗, we call w-instantiated predicate or simply instantiated predi-
cate a predicate in which all variable and terminal symbols have been replaced
by ranges of w, and all ranges of the same argument of the same predicate have
then been replaced by the range resulting from their concatenation. If this is
possible, the predicate is said to be instantiable by w. For example, if the length
of w is 3 (w = a1a2a3), a possible instantiation for the predicate A(XY,a3,a2Y)
is A(0..3, 2..3, 1..3). We define in the same way instantiated clauses. The argu-
ments of a predicate (but not different variables of the same argument) can of
course be replaced by discontinuous, or even overlapping ranges, since the same
variable can occur in several arguments of several predicates of a clause. This is
denoted as the non-linerarity of RCGs, and allows to express different points of
view or properties on a given range that interact with each other. As we will see
below, this is a major advantage of RCGs for linguistic use. More generally, it is
because of this non-linearity that RCGs have the necessary expressive power to
cover all PTIME.

For a given positive RCG G and an input string w, a binary derive relation,
denoted by =⇒

G,w
, and having as operands sets of instantiated predicates, by the

following. Let Γ1 γ Γ2 be an instantiated right-hand side of some clause (and
thus a set of predicates, as said before), where γ is also the left-hand side of the
instantiated clause γ → Γ . We have then Γ1 γ Γ2 =⇒

G,w
Γ1 Γ Γ2.

A string w ∈ T ∗ of length n is recognized by the grammar G if and only an
empty list of predicates can be derived from the instantiated predicate S(0..n)

3 Therefore, if i1 �= i2, the ranges i1..i1 and i2..i2, while both empty, are not equal.

274 B. Sagot

(S being the axiom), i.e. if and only if S(0..n) +=⇒
G,w

ε, the binary relation +=⇒
G,w

being the transitive closure of =⇒
G,w

.

For example, let us consider the non semi-linear language L = {a2p | p ≥ 0}.
The following positive RCG recognizes this language:

S(XY) → S(X) EQ(X,Y)
S(a) → ε
EQ(aX,aY) → EQ(X,Y)
EQ(ε,ε) → ε

Indeed, this grammar recognizes the input string a thanks to the second
clause. And an input string consisting of 2p times a (p ≥ 1) is decomposed by
the first clause in two ranges that must have the same length (predicate EQ4)
and denote a (same) substring that has to be in L as well (of length 2p−1).

2.2 Negative RCGs

Positive RCGs cover PTIME. Therefore, the set of languages that can be rec-
ognized by a positive RCG is closed under complementation. For this reason,
it is only for practical reasons, and not to increase the expressing power of the
formalism, that negative predicate can be introduced.

Indeed, we call negative predicate a predicate marked as such, either by a
bar over the predicate (A(. . .)), or by the symbol ! in front of it (!A(. . .)),
the intended meaning being based on ”negation by failure”: the empty list of
instantiated predicates can be derived from an instantiated negative predicate
if and only if it can not be derived from its positive counterpart.

We call negative RCG an RCG that has at least one clause containing in its
right-hand part at least one negative predicate. A negative RCG is consistent if,
for any w ∈ T ∗, there is no w-instantiated predicate A(. . .) such that the empty
list of predicates can be derived from both A(. . .) and !A(. . .).

2.3 Closure Properties

It can be shown easily [3] that RCLs are closed under union, concatenation,
Kleene iteration, and, more interestingly, intersection and complementation.
The grammars recognizing the operand languages need not be modified. One
or two more suffices. In a rather informal way, and with S1 and S2 being the
axioms of RCGs recognizing respectively the languages L1 and L2, we can get
the closures by adding the following clauses, S being the axiom of the resulting
language:

4 The notation ε groups in a rather confusing way two different things, as visible in the
last clause of the grammar given as example: it can denote either an empty string,
i.e. an element of T ∗, or an empty list (or set) of predicates.

Linguistic Facts as Predicates over Ranges of the Sentence 275

Union S(X) → S1(X)
S(X) → S2(X)

Concatenation S(XY) → S1(X) S2(Y)
Intersection S(X) → S1(X) S2(X)
Kleene iteration S(ε) → ε

S(XY) → S1(X) S(Y)
Complementation S(X) → !S1(X)

2.4 Parsing

Range Concatenation Languages can be recognized and analysed in polynomial
time. More precisely, let |G| be the size of the k-RCG G, defined as the sum of
the number of right-hand side predicates over all its clauses, and l the maximum
number of right-hand side predicates in the longest clause. In [3], Boullier gives
an algorithm that is O(|G|n2k(1+l)) in time.

Moreover, Boullier has developed an efficient RCG-parser that has been al-
ready used to build TAG and MC-TAG parsers after an appropriate conversion
step, with excellent efficiency results [7].

3 Introducing Meta-RCGs

Range Concatenation Grammars are a powerful though efficient formalism that
can be seen as logic programming on ranges of the input string. For this reason,
and for others (see [5]), it is a suitable basis to develop a linguistic formalism,
but is not satisfying as such. Indeed, a linguistic formalism is almost always
twofold, since on the one hand it builds the structure of the sentence, and on the
other hand it computes features on this structure. In most formalisms, such as
TAGs, LFGs, HPSGs, Dependency Grammars or Categorial Grammars, these
two aspects are processed with different operators or even different mechanisms,
not necessary simultaneous. In some cases, this leads to imprecise or excessive
expressive power for the resulting formalism, and, if the separation between
these two aspects is too strict, this also leads to problems concerning, for exam-
ple, combinatorial explosion, error recovery algorithms, or automatic learning
(dealing with unknown words).

Moreover, the limit between the structural backbone (often purely syntactic)
and the features computed over it (often referred to as decorations), is hardly
linguistically justified. Its position is not precisely and uniquely defined: a given
formalism or implementation of a formalism can implement a linguistic property
in the backbone, an other one treating it as a feature. On the other side, the
linearity of most formalisms, i.e. their non-ability to reuse several times the same
range of the sentence, makes it impossible to include additional information
inside the grammar, such as lexical semantic constraints, in a satisfying way
(i.e. not only as a limited set of ”semantic” features that are not avoidable for
linguistic reasons, but really as a complete set of semantic predicates).

276 B. Sagot

For all these reasons, it seems appropriate to implement, if it is possible,
all linguistically-motivated ”decorations” inside the grammatical formalism that
describes the structural backbone. Furthermore, we make the hypothesis that
parsing natural language is possible in a polynomial time5. Thus, our linguistic
formalism can be seen as decorated RCGs that can be compiled into pure RCGs.
In the remaining of this section, we shall define our formalism, called Meta-RCGs
(or MRCG), which defines over RCGs these decorations and the way they can be
converted into RCG predicates and/or arguments. The borderline between the
structure and the decorations is defined precisely by the following: a decoration
is a property of (a portion of) an analysis, and the structure retains all properties
of ranges.

The main idea underlying this approach is that the non-linearity of RCGs
allows to treat as structural predicates (and not as decorations) several different
linguistic facts over the same ranges. For example, syntactic and lexical semantic
facts are used simultaneously. However, in a linguistic grammar, the analysis
of a given range of the input string can be ambiguous. Therefore, the use we
make of non-linearity has to be able to guarantee that all facts expressed in
a global analysis about a given range are compatible: we have to prevent the
apparition of analyses where such a range is analysed in a first way in one
part of the global analysis, and in an other incompatible way in an other part
of the analysis. However, it is not possible in a polynomial way to label the
complete analysis of a range for later identification and re-use. Therefore, it is
necessary to define a polynomial amount of information that will be exported
by ranges to other parts of the analysis. This is what is done in our formalism,
where this amount of information regroups the heads of a syntagm and features
(decorations) associated to it, which will be made accessible at different parts of
the analysis thanks to contexts. The remainder of the analysis of this syntagm
will be inaccessible from the ”outside”.

Let GRCG = (N,T, V, P, S) be a classic RCG, as defined above. We will
define an associated Meta-RCG (hereafter MRCG) GMRCG extending GRCG

(the extension concerns grammars, not necessarily associated languages). For
this, we will first go through preliminary remarks and new definitions.

3.1 Heads

While controversial by many aspects, the notion of head of a syntagm is
widespread in linguistic literature, and has been intensively used by many gram-
matical frameworks, such as HPSG [6], but also LFG, Dependency Grammars,
and others. We introduce heads (and coordinating items separating them) by ex-

5 Even the parsing of the syntax only of natural language probably needs the expressive
power of RCGs, i.e. all PTIME Indeed, it can be shown (see for example [5] and
references therein) that some specific phenomena in some languages are beyond the
expressive power of Mildly Context-Sensitive languages, and thus by formalisms as
powerful as LCFRS (e.g. Chinese numbers, genitives in old Georgian, scrambling in
German, or multiple verbs coordinates in Dutch).

Linguistic Facts as Predicates over Ranges of the Sentence 277

tending the notion of argument in the following way: we call MRCG-argument,
or more simply argument one of the following items:

– an (RCG-)argument, i.e. as said before the concatenation of elements of
V ∪ T ,

– a head-coordination argument or hc-argument, i.e. an element of V followed
by the operator ∧ or the operator !,

– a single-head argument, or sc-argument, i.e. an element of V followed by the
operator +,

– a head-adding argument or ha-argument, i.e. an argument of the form
V1

+V2
+V3

∧.

An argument that is not a classical RCG-argument is called a syntagmatic argu-
ment. The intended meaning is the following. If Syntagm is a range denoting a
syntagm, Syntagm∧ denotes a pair of lists, the first one being the list of its heads
and the second one the list of the coordinating items that are between them.
Hence, if the substring corresponding to Syntagm is ”an apple or a pear”, a rea-
sonable grammar will give an analysis such as Syntagm∧ includes a list of heads
covering ”apple” and ”pear” and a list of coordination items covering ”or”. The
argument Syntagm! is the same thing, but with a number of heads (respectively
coordination items) that is exactly 1 (respectively 0). A single-head argument
V+ creates a syntagmatic argument made out of a list of heads containing only
one element, V (thus, it has to be of length 1), and an empty list of coordinating
items. Finally, a ha-argument V1

+V2
+V3

∧ is a syntagmatic argument whose heads
list is the concatenation of V1 and the heads list of V∧3 , and whose coordination
items list is the concatenation of V3 and the coordination items list of V∧3 .

For example, and for illustration purposes only, a clause analysing (recur-
sively) as a nominal group6 a simple coordination of basic nominal groups could
look like the following:

NP(Det Head Coord Np2,Head+Coord+Np2∧)
→ NOUN(Head) DET(Det,Head) COORD(Coord) NP(Np2,Np2∧).

3.2 Features and Homonym Numbers

A feature (or attribute) can be defined as a (finite) vector F = (f1, . . . , fn). A
constant value of the feature F is an element of F . A variable value of the fea-
ture F is the concatenation of the operator $ and an element of a set of variable
feature-values symbol, Vf (for example, if g ∈ Vf , $g is a valid variable value for
F). We call features list a list of feature names. An attribute-value pair, or av-
pair, is of the form F = v, where F is the name of a feature and v is a constant or
variable value of F . Finally, an attribute-value pairs list, or av-list, is a sequence
of av-pairs in which an attribute can appear at most once in an av-pair.

We call homonym number a vector similar to a feature, defined as HN =
(0, . . . , hmax). First, we define a terminal argument as an argument that has

6 We do not use here the phrase noun phrase for a reason that will be explained later.

278 B. Sagot

at most one variable, and that denotes a range of maximal length 1. The role
of a homonym number is then to associate some terminal arguments of some
predicates a special number that allows to distinguish between two homonymous
terminals (i.e. words). For each predicate, a special function homonymous-args
gives the list of the positions of its arguments that have such an homonym
number. But these numbers are not apparent in MRCG-clauses.

3.3 Contexts

We define a contextual item as an element Ctxt of the set V of variable symbols
possibly followed by the operator / or by the operator ∧, and possibly followed
by the operator : and a features list. The role of contextual items is to modelize
long-distance dependencies. For this reason, and although declarative as our
whole formalism, the intended meaning of contexts is more easily described with
an operational point of view. Long distance dependencies will be treated in 2
steps that share common points with the Slash feature of HPSG: at one point
of the analysis, a contextual item is built out of the concerned syntagm and
”pushed” into the predicate-dependant context of the concerned predicate, A. All
predicates related to A that can accept this context and for which no new value
is explicitly given will inherit this value, thus transporting the context to other
parts of the analysis. At some (arbitrarily distant) other point of the analysis,
this contextual item, its heads and/or its features can be put into arguments (or
”dropped”, or ”popped”) and used.

Hence both operators, with the following meanings: the / operator means
that the features list associated to the range Ctxt (this features list is in this
case mandatory) is pushed into the context, but not Ctxt itself. The operator
∧ means that the range Ctxt is a syntagm, and that its heads and coordination
items, i.e. Ctxt∧, have also to be pushed along with the range Ctxt in the context.

The percolation of contextual items from one point of the analysis to an
other is allowed by a special function that needs to be defined, called context-
of. This function is defined over the set N of predicate names and, for a given
predicate, returns a list of contextual items. The meaning of this function is the
following: given a predicate name A, the contextual items in context-of(A) are
associated to all occurrences of A predicates. Suppose that, in a given clause, the
same contextual item Ctxt (or its heads, or some of its associated features) is
associated to more than one predicate. All such predicates that are on the right-
hand side and that explicitly re-define the value of Ctxt will get this value. And
all such predicates that are on the right-hand side and that do not re-define the
value of Ctxt will share its value with the one of the left-hand side predicate. On
the left-hand side, the value of Ctxt (or of Ctxt∧ or of some of its features) can
be equated to a real range (or to a feature value, if appropriate). For example, if
a contextual item Ctxt is associated to both predicate names A and B, and if no
specific equation redefines a new value of Ctxt for predicate B, then a clause such
as A(X) → B(X) will ensure that the contextual item denoted by Ctxt is passed
to the predicate B in the same way as the range denoted by X. We define only one
operation on contexts, denoted by the operator =. When applied to a contextual

Linguistic Facts as Predicates over Ranges of the Sentence 279

range or contextual heads/coordinations, it is a range-equality operator. When
applied to contextual features, it is a value-equality operator. The feature F
of a contextual item Ctxt is accessible through a special dot operator with the
following syntax: Ctxt.F. The distinction between a ”push” and a ”drop” (or
”pop”) lies only in the fact that the = operation is done on the left-hand side
predicate (”drop”) or on a right-hand side predicate (”push”), a direct use of
Ctxt as a standard range in the right-hand side corresponding also to a ”drop”.

Finally, we call context-value pair, cv-pair or contextual equation, an expres-
sion of the form Ctxt=Range or Ctxt.F=v. We will see examples when we have
defined the complete MRCG syntax.

3.4 MRCG

MRCG clauses are an extension of RCG clauses, since predicates are replaced
by meta-RCG predicates of the following form:

A(α1, . . . , αi, . . . , αp)[φ1 . . .φj . . .φq]{κ1 . . .κk . . .κr},

where αi are MRCG-arguments, φj are av-pairs (equations on features), and
κk are cv-pairs (contextual equations). The features part and the contextual
part are facultative. For example, using LDDep as a shortcut for ”long-distance
dependency syntagm”, here is a valid MRCG-clause, assuming that context-
of(NP)= (LDDep∧:number,case):

VP(Verb,Verb+){LDDep.case=accusative} →
VERB(Verb)

OBJ(LDDep, LDDep∧,Verb)[number=LDDep.number]{LDDep=0},
where LDDep=0 is syntactic sugar for ”LDDep is a 0-length range”. The meaning
of such a clause is the following: we can build with the range Verb a VP in a
context where we have a long distance dependency LDDep with an accusative
case if Verb is a verb, and if we can make of LDDep the direct object of this verb
(this object having the same number than the one of LDDep), in a context where
no long distance dependency is available any more for use.

3.5 Conversion from MRCG to RCG

As said before, the MRCG formalism can be converted into a strongly-equivalent
RCG. This allows to use Boullier’s efficient RCG parser, but also to avoid problems
explained in the first paragraphs of this section that arise when the analysing pro-
cess is decomposed in more than one step. However, the details of this conversion
are not very interesting, and will not be presented here. We have designed and real-
ized such a converter, that we call MRCG-compiler. As a side effect, this compiler
produces an information file about the conversion that can be used to rebuild the
MRCG-analysis of a sentence from the RCG-analysis given by the RCG parser.

3.6 Grammar and Lexicon

An important part of the design of a grammatical formalism for natural language
is the design of the interface between the grammar and the lexicon. Although it

280 B. Sagot

is possible, there is no reason to limit an RCG to be lexicalized, i.e. to include in
every clause at least one left-hand side argument that has at least one terminal
symbol. However, a lot of information is given by the terminals, here words7,
that has to be both represented and used in a way which, as for all parts of the
formalism, has to be both computationally efficient and linguistically acceptable.

Several options could be thought of, taking advantage of the properties of
closure of RCGs:

1. Compile a huge grammar with as many terminals as there are different in-
flected forms in the language, leading to an enormous grammar,

2. Compile separately the non-lexicalized part of the grammar and one or more
lexical modules with only lexicalized clauses, either with the RCG parser gen-
erator or with a specific module that profits from the hierarchical structure
of lexical information, uses appropriate algorithms to deal with the enormous
amount of inflected forms and that is able to append the RCG parse forest
with consistent sub-forests.

3. Compile the non-lexicalized part of the grammar, and, for each sentence,
generate and compile dynamically the set of lexicalized clauses involving
terminals present in the input sentence.

Independently of this choice, lexicalized clauses can be represented either as such,
or be computable as the result of an inheritance process inside an ontology.

4 Parsing French with Meta-RCGs: Two Examples

As said before, the aim of the Meta-RCG formalism is to allow the design of gram-
mars that take into account at the same time and with the same technical status
morphological, syntactical and (lexical) semantics information. This is achieved
by different predicates, thanks to the non-linearity of RCGs and hence Meta-RCGs.

We have developed, and still do, a large-coverage grammar for French lan-
guage in the Meta-RCG formalism. To show how this formalism can be used
for what it has been designed for, we will show how two sentences are analysed.
The first sentence, Un avocat mange un avocat (”A lawyer eats an avocado”),
shows how homonym numbers and lexical semantics work together to fully dis-
ambiguate ambiguous inflected forms. The second sentence, Pierre veut une bière
et dormir (”Pierre wants a beer and [wants to] go to bed”), is an example of het-
erogeneous coordination (between a noun phrase and an infinitive verb phrase)
and of subject control verb. Of course, both for place and complexity reasons, the
whole analyses will not be shown, but only simplified parts of them to present
the involved mechanisms.

7 Since we want to include lexical semantic properties inside the grammar, the tradi-
tional approach of a lot of formalisms, which associate to all words a category, whose
value is used as terminal symbol in the grammar, is not satisfactory. It would lose
too much information or would require such a big amount of categories that there
would not be any advantage over the direct use of words as terminals.

Linguistic Facts as Predicates over Ranges of the Sentence 281

In the following, instantiated MRCG-clauses will respect the following con-
vention: a range 〈i..j〉w covering the substring s will be represented as si..j . If
this range has an homonym number h, it will be represented as sh

i..j . If it has
heads, the corresponding terminals will be underlined, and its homonym number
will be indicated as an exponent.

4.1 Lexical Ambiguity and Semantics: Un Avocat Mange un
Avocat

Let us consider the following sentence:

(1) Un avocat mange un avocat
A lawyer eats an avocado

This sentence is syntactically extremely simple. We use it as an example
only to give an insight into the top-level clauses of our grammar and to show
the role of homonym numbers. Moreover, grammar rules will be simplified. In
particular, predicates and clauses dealing with non-existent topological places
(e.g. sentence modifiers, adverbs, clitics, long-distance dependencies and so on)
will be ignored. Finally, for space reasons, features will not be displayed, except
when absolutely necessary, and terminals are abbreviated by their first charac-
ters followed by a dot when necessary. Some parts of the analysis, that are not
very important for its global understanding, are replaced by textual descriptions
printed in italics. This being said, here is how our grammar analyses this sen-
tence (VK stands for verbal kernel, VC for verbal complex, and dth=act resp. pass
for diathesis=active resp. passive):

PHRASE(un av. mange un av.0..5) → VSEM IND(mange0
2..3)

PHRASE2(un av. mange0 un av.0..5).

VSEM IND(mange0
2..3) → VERBE(mange0

2..3)

LEX(mange0
2..3)[mode=Ind].

VERBE(mange0
2..3) → .

LEX(mange0
2..3)[mode=Ind] → .

PHRASE2(un av. mange0 un av.0..5) → SUBJECT(un avocat0
1..2,mange

0
2..3)

VP(mange0 un avocat2..5){Subj=un av.0
1..2}.

VP(mange0 un avocat2..5) → VK(un avocat2..5,un avocat2..5).

VK(mange0
2..3,un avocat2..5) → VC(mange0,3..3,3..3)

ROLES(2..2,2..2,2..2,un av.2..5,mange
0
2..3).

ROLES(2..2,2..2,2..2,un av.2..5,m.
0
2..3) → OBJECT(un avocat1

3..5,m.
0
2..3)

ROLES(un avocat1
3..5,2..2,2..2,5..5,m.

0
2..3).

Before going on with the remainder of the analysis, it is necessary to clarify the
meaning of the arguments of the predicate ROLES. In fact, the 3 first arguments
(they are 5 in the real grammar) denotes the syntactico-semantic roles associated
with the verb. The first role is the accusative one, the second role is the dative
one, and the last one is the genitive one. The recursive predicate ROLES ”eats” at
each call a complement in the list of not-yet-parsed complements (4th argument),
analyses it, and, if it fills a not-yet-filled role, fills the corresponding argument
of the right-hand side call of ROLES with it. When the range of not-yet-parsed

282 B. Sagot

un avocat mange un avocat

S

un avocat_0 mange un avocat_1

NP

VP

Noun

NDET

Determiner Noun

N

NP

DET

Determiner

V

Verb

Fig. 1. Constituency view of the analysis of sentence (1)

arguments is empty, roles filling is completed, and verifications can be done about
mandatory or impossible roles. This being said, here is how the analysis goes on:

ROLES(unavocat1
3..5,2..2,2..2,5..5,m.0

2..3)→True because mange0isatransitive

verb and the first argument of

ROLES, i.e. the accusative

role,is filled by un avocat1
3..5

SUBJECT(un avocat0
0..2,mange

0
2..3) → SUBJ SEM(avocat0

1..2,mange
0
2..3)

NP(un avocat0
0..2).

SUBJ SEM(avocat0
1..2,mange

0
2..3)[d.=act]→ AGENT(avocat0

1..2,mange
0
2..3)

AGENT(avocat0
1..2,mange

0
2..3) → ANIMATED(avocat0

1..2).
OBJECT(un avocat1

3..5,mange
0
2..3)→ OBJ SEM(avocat1

4..5,mange
1
2..3)[dth=pass]

NP(un avocat1
3..5) .

OBJ SEM(avocat1
4..5,mange

0
2..3)[d.=pas] → PATIENT(avocat1

4..5,mange
0
2..3)

PATIENT(avocat0
1..2,mange

0
2..3) → EDIBLE(avocat1

4..5).
NP(un avocat0

0..2) → True because un avocat0
1..2

is a valid noun phrase

NP(un avocat1
3..5) → idem

Linguistic Facts as Predicates over Ranges of the Sentence 283

As can be seen, the process can be summed up as follows:

– Identify the semantic part of the main verb (the past participle if there is
one or more auxiliarie(s)), and make of it the head of the sentence,

– Identify the whole verbal kernel (verbal components, clitics, and adverbs
that are inbetween),

– Analyse the subject, which is a noun phrase (NP clause ; noun phrases can be
infinitives or propositions) and a semantic argument of the verb (SUBJ SEM
clause), and put it in the context (not used in this sentence),

– Identify one after the other all post-verbal complements (here only one), and
analyse it both as a noun phrase (NP clause) and as a semantic argument of
the verb (* SEM clauses).

Of course, this simplified presentation doesn’t explain how are treated attributes
of the subject or of a complement, clitics, long-distance dependencies, modifiers,
relatives, and so on. It is only the basic skeleton of the grammar.

For illustration purposes, we give in Figure 1 the constituency tree extracted
automatically from the global analysis.

4.2 Heterogeneous Coordination and Control Verb: Pierre Veut
Une Bière et Dormir

Let us consider the following sentence:

(2) Pierre veut une bière et dormir
Pierre wants a beer and [wants to] sleep

As said before, this sentence exemplifies two phenomena: heterogeneous coor-
dination between a nominal syntagm (une bière) and an infinitive (dormir), and
subject control verb (veut, which controls the subject Pierre for the infinitive
dormir). We will not give the whole analysis of this sentence, but only the most
interesting parts.

First, we will see how the heterogeneous coordination is treated. In fact, we
make the distinction between a noun phrase and a nominal group. For us, a noun
phrase is a phrase that plays the role which is canonically fulfilled by a phrase
built around a noun. Such a phrase is a nominal group. Thus, a nominal group, an
infinitive or a proposition are noun phrases. This distinction makes it possible to
explain several facts, including the fact that an infinitive and a nominal group
can indeed be coordinated, as in (2). It can also deal with the fact that, for
example, several verbs accept an infinitive as a direct object. Predicates such as
OBJ SEM can nevertheless constraint the object of a verb to be an infinitive, or
on the contrary prevent it from being an infinitive. But in our grammar, this is a
matter of constraints over the object, and not a fundamental difference between
different kinds of syntagms, at least at the level of the object relation. Hence the
following analysis for this relation, in which contexts are not shown, since they
will be useful and thus shown later (NG stands for nominal group):

284 B. Sagot

OBJECT(une bière et dormir2..6) → OBJ SEM(bière0
3..4,veut

0
1..2)

OBJ SEM(dormir0
5..6,veut

0
1..2)

NP(une bière0 et dormir0
2..6) .

OBJ SEM(bière0
3..4,veut

0
1..2) → NOUN(bière0

3..4) .

OBJ SEM(dormir0
5..6,veut

0
1..2) → [See below]

NP(une bière0 et dormir0
2..6) → NP(une bière0

2..4)

NP(dormir0
5..6)

COORD(et0
4..5)

[other predicates

for features processing] .

NP(une bière0
2..4) → NG(une bière0

2..4) .

NG(une bière0
2..4) → [Standard analysis for a nominal group]

NP(dormir0
5..6) → INFINITIVE(dormir0

5..6) .

INFINITIVE(dormir0
5..6) → [See below]

In our grammar, any noun phrase can potentially be an infinitive. The fact
that veut is a subject control verb has only one impact: it allows the predi-
cate OBJ SEM(dormir0

5..6,veut
0
1..2) to be true. Thus, the noun phrase that is

the object of veut0 can really be an infinitive. The analysis of this infinitive,
here dormir, uses the contextual item Subject in the following way. As for the
sentence studied in the previous paragraph, the analysis of the subject, here
Pierre0

0..1 (see the PHRASE2-clause in the previous example), ”pushes” this syn-
tagm in a contextual item named Subj. Then, the predicate INFINITIVE, which

Pierre veut une bière et dormir

veut

Subject

Direct object Direct object

Pierre

bière dormir

Subject

Fig. 2. Dependency view of the analysis of sentence (2)

Linguistic Facts as Predicates over Ranges of the Sentence 285

inherits this context through respectively VP, VK, ROLES, OBJECT and NP, uses
it to build the syntactico-semantical dependency thanks to the following clause
(VK INF stands for verbal kernel of an infinitive, and the context of INFINITIVE
is now shown):

INFINITIVE(dormir0
5..6){Subj=Pierre0

0..1 Subj.gender=masc Subj.number=sing}
→ VK INF(dormir0

5..6,Pierre
0
0..1)[gender=masc number=sing] .

For illustration purposes, we give in Figure 2 the dependency graph extracted
automatically from the global analysis.

5 Conclusion

We have presented a new formalism, called Meta-RCG, and based on Range Con-
catenation Grammars. This formalism, thanks to the non-linearity of RCGs,
allows the development of grammars that implement linguistic facts as predi-
cates over ranges of the input sentence. These facts can deal for example with
morphology, syntax, lexical semantics, combinaisons thereof. The non-linearity
makes it unnecessary to put in costly and numerous features all the linguistic
information that doesn’t fit an insufficient backbone. Moreover, the very concept
of predicates over ranges of the input string seems very intuitive from a linguistic
point of view.

We have shown thanks to two small examples the way linguistic Meta-RCGs
can be developed. As said before, we are currently developing such a grammar
for French. The development is already quite advanced, and we can deal with
phenomena like subject, object or indirect-object control verbs, raising verbs,
infinitives, completives (either modifiers or arguments), light verbs, homogeneous
and heterogeneous coordination, participial modifiers, attributes of the subject or
of the object, auxiliaries, arguments of nouns (”Peter’s departure”) or adjectives,
negation (which can be discontinuous in French), relatives (including relatives
in ”dont” that can modify the subject or the object of an arbitrarily deep verb
inside the relative) and many other less complicated phenomena. Parsing times
are very satisfying8. We are currently using the Eurotra corpus of French
sentences [8], which gives a good set of simple to very complicated sentences: we
proceed sentence by sentence in an exhaustive manner, and modify the grammar
so as to get only the appropriate parse (or the appropriate parses if the sentence
is really ambiguous). We have currently reached the second half of the file, but
we have already implemented several phenomena that appear later on in this
corpus. Moreover, we have developed filters that allow to project our analysis

8 We use a ”benchmark-sentence” which has simultaneously a relative in ”dont” that
modifies the coordinated object of a verb of the relative, with a coordinated subject,
and which is an object-controlled verb inside a completive. Parsing time, depending
on the state of the grammar, has oscillated in the last months between 0.4 and 2
seconds. This sentence is the following: Paul aime la Normandie dont je sais que
Pierre regarde Marie et Paul manger une pomme et une poire verte.

286 B. Sagot

into different views, including (for now) a constituency tree, a dependency graph,
topological boxes, and predicate-arguments semantics.

For all these reasons, we believe that we have designed a formalism that
virtually satisfies the constraints given in the introduction of this paper to char-
acterize an interesting formalism. Further work includes the continuation of the
extension of our grammar for French thanks to this Eurotra corpus, a more
precise definition of the abstract foundations of our formalism, an in-depth lin-
guistic analysis of its properties and of the grammars it allows to write, and a
more precise definition of the interface between lexicon and grammar. It also
includes the extension of our grammar to other components of the linguistic
analysis of a sentence, such as discourse analysis or Montague-like semantics.

References

1. Dahl, V., Tarau, P. and Huang Y.-N.: Datalog Grammars. In: GULP-PRODE 2
(1994) 268–282

2. Blache, P.: Parsing with Constraint Graphs: a Flexible Representation for Robust
Parsing. In Di Sciullo, A.M., ed.: Grammars and NLP LNCS, Springer-Verlag (2001)

3. Boullier, P: Range Concatenation Grammars. In Bunt, H., Carroll, J., Satta, G.,
ed.: New developments in parsing technology. Kluwer Academic Publishers (2004)
269–289

4. Boullier, P.: Counting with range concatenation grammars. Theoretical Computer
Science 293 (2003) 391–416

5. Sagot, B., Boullier, P.: Les RCG comme formalisme grammatical pour la linguis-
tique. In: Proceedings of TALN ’04, Fez, Marocco (2004) 403–412

6. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar, University of
Chicago Press and CSLI Publications (1994)

7. Barthélémy, F., Boullier, P., Deschamp, P., Villemonte de La Clergerie, É.: Guided
Parsing of Range Concatenation Languages. In: Proceedings of ACL ’01, Toulouse,
France (2001) 42–49

8. Danlos, L., Laurens, O.: Présentation du Projet Eurotra et des grammaires
d’Eurotra-France. Technical Report n 1, Université Paris 7 - Talana/LISH (1991)

How to Build Argumental Graphs
Using TAG Shared Forest:

A View from Control Verbs Problematic

Djamé Seddah1 and Bertrand Gaiffe2

1 Loria, Nancy
djame.seddah@loria.fr

2 Loria/Inria Lorraine, Nancy
bertrand.gaiffe@loria.fr

B.P.239 -F 54506 Vandoeuvre-lès-Nancy, France

Abstract. The aim of this paper is to describe an approach to semantic
representation in the Lexicalized Tree Adjoining Grammars (LTAG)[1]
paradigm. We show how to use all the informations contained in the two
representation structures provided by the LTAG formalism in order to
provide a dependency graph.

1 Introduction

A LTAG grammar consists of a large lexicon that associates each lemma to a set
of elementary trees. Each elementary tree has one “main” anchor (instantiated
by a lemma) which is generally a minimal semantic unit. Each tree reflects the
argument structure of the main anchor. The tree’s leaf nodes must describe
the logical arguments of the predicate implied by the anchor. TAG provides
two operations to manipulate elementary trees : adjunction and substitution.
The substitution operation corresponds to context free derivation : an initial
tree with a root labeled “X” can be substituted in a substitution node of the
same category (Substitution nodes have to be leaves of elementary trees). The
adjunction operation gives TAG additional power over Context Free grammar.
It is optional and recursive. This operation inserts an auxiliary tree into another
tree. The inserted tree must have a foot node which has the same category of the
root node and of the insertion node.

All elementary trees are extended projections of lexical items and contain all
syntactic arguments of the lexical anchors. In fact, when a given LTAG gram-
mar follows principles[2] such as the predicate-argument co-occurrence principle
and minimal semantic unit principle, the syntactic arguments also correspond
to semantic arguments. Moreover the LTAG framework provides two kinds of
representations : a derivation tree which strictly records the resulting operation
from the parsing of a given sentence, and a derived tree which is the final syn-
tactic representation of the analysis. Each node of the derivation tree is labeled

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 287–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 D. Seddah and B. Gaiffe

by a Gorn address1 telling us where the operation took place in the dominating
tree.
Let us consider the following sentence :

(1) Jean aime beaucoup Marie
Jean loves much Marie

A toy grammar that analyzes this sentence is shown in figure 1 and the re-
sulting derived and derivation tree on the figure below. Each substitution node
is labeled as Xj , where X corresponds to its category and j to its argumental
position within its respective tree.

α1|α2 β1 α3
V

V* Adv

beaucoup

P

VN0 N1

aime

N

(Jean | Marie)

Fig. 1. Elementary trees

We see in figure 2 that the derivation tree2 mirrors the predicate-argument
structure.

Derivation tree Derived tree

α3 aime

(1) α1 Jean (3) α3 Marie (2) β1 beaucoup

P

N0

Jean

V

V

aime

Adv

beaucoup

N1

Marie

Fig. 2. Derivation tree and derived tree of “Jean aime beaucoup Marie”

In an ideal world it would be possible to work from this structure to build
a compositional semantic representation in the spirit of Montague grammar. In

1 the root has the address 0, the ith child of the root has address i and for all other
nodes : the ith child of the nod with address j has address j.i

2 For the sake of simplicity, each tree whose name begin by β, resp α, is governed by
adjunctions, resp. substitution.

How to Build Argumental Graphs 289

fact, the LTAG formalism was conceived to make the interface between semantic
and syntax easy to manipulate such that one should only have to associate
λ-terms to initial trees to obtain a logical formulae or a correct predicative
structure3. The derivation tree would simply guide the application operation on
λ-terms, so that we get at its root the result of our λ-term computation. If we base
our argumentation upon the properties of substitution nodes, their mandatory
completion, we could see these node as the exact counterparts of argumental
variables. The main properties of adjunction are that it is non predictable and
optional, so we have to consider the tree where the adjunction took place as an
argument of the function associated to the auxiliary tree. Thus the derivation
tree seen in fig 2 could be interpreted as follows4 with simplified λ-terms :

β1 (beaucoup): λ([1]) β1([1]) (α1)

[1] α1 (aimer):
λ([1], [2]) α1([1], [2]) (α2, α3)

[1] α2 (Jean) [2] α3 (Marie)

Fig. 3. Syntax-semantic interface in an ideal world

The problem with this kind of syntax-semantic interface is it only works on a
very small subset of language, only for simple predicative structure : 1) because
there is no distinction being made between predicative and modifier adjunction
(the first one inverses the dependency arc between two trees), 2) because there
is no any proper mechanism to resolve scope ambiguities and, 3) because the
semantic link between a subject and a verb complementer when dealing with
control-verbs is not taken into account.

An extensive amount of literature exists on these subjects [3, 4, 5] and the
solutions proposed can be divided in two sets : in one solution the derivation tree
is considered unusable and the syntax-semantic interface is built on the derived
tree [6, 7] ; in the other solution, the information provided by the derivation tree
need to be enriched and thus the LTAG formalism is modified, if not replaced by
Multi Component TAG [8] to deal with modifier scope information in the case
of [9].

3 The use of a Categorial Grammar(CG) could simplify a syntax-semantic interface
because of the direct connection between CG’s combination rules and λ-calculus
functional application, so applying β-reduction while reducing CG rules will result
in a correct λ-term. CG and LTAG are known to be very close (same generative
power, both lexicalized formalism and a limited number of possible operations), but
TAG derivation trees are almost direct representations of predicative structures and
for most applications, this structure is what we need.

4 In this mini-model we replaced classical λ-calculus variables (x, y..) by square bracket
argumental position.

290 D. Seddah and B. Gaiffe

Although these solutions are considered elegant for solving scope ambiguities
by putting together flat semantics and underspecification, they cannot represent
missing argumental links while staying in the strict LTAG formalism. This is
why the derived trees has been used.

Using derived trees, LTAG feature structures are used to rebuild predicative
structure or logical formulae. The main argument against this method is that
every event which occurs during the semantic process is bound to a node where a
derivation would have occurred anyway (such as substitution node or adjunction
node) so the feature structures added to the derived tree would be redundant
with the derivation tree. Moreover, in the solution proposed by [6], the number of
feature structures is not bound so the weak generative capacity of the formalism
is extended as noted by [10].

In fact, we think that the proper way to use the strength of LTAG is to build
our semantic from both the derivation tree and the derived tree through the use
of what we call “Derivation Forests”.

In this paper, we will not discuss the problems with generating proper logical
formulae, instead we will discuss how to provide a dependency graph whose main
characteristics are to make missing argumental links appear and to provide all
analyses within a single one structure. We will use the phenomenon of control-
verb to guide our demonstration.

2 Control-Verb Problematic

In this section we will briefly expose this problematic in the TAG framework5.
Control-verbs are often used to illustrate a visible gap between syntax and se-
mantic in TAG. Some deep syntactic argument cannot be represented in the
derivation tree although it is supposed to reveal the predicate argument struc-
ture of a given sentence. For example, in the sentence 2b a syntactic agreement
exists between Marie and the complement of the verb être, that is in French
the adjective “belle” has a visible feminine marker. This agreement marks a co-
indexation between the subject of “esperer”and the subject of “être”. Thus, if we
consider “être belle” as a predicate, its argumental position is filled and should
be present in the derivation tree following the co-occurence predicate-argument
principle.

(2) a. Jean espere dormir
Jean hopes to sleep

b. Marie espere être belle
Marie hopes to be nice

But given the toy grammar6 in figure 4, the link between these two phrase
structures (“Marie” and “être belle”) does not appear in the derivation tree even

5 The reader may find a more complete explanation in [11].
6 Note the empty node in the initial tree for dormir, we call this node unrealized

substitution node.

How to Build Argumental Graphs 291

auxiliary tree : initial tree :
(β1) espérer (α1) dormir

P

N0↓ V

[espérer]

P0*

P

N

ε

V

[dormir]

Fig. 4. Control verb toy grammar

derived tree : derivation tree

P

N

Jean

V

espère

P

N

ε

V

dormir

α1 : dormir

(0) β1 : espère

(1) α2 : Jean

Fig. 5. LTAG analysis for “Jean espère dormir”

dormir

esperer

Jean

Fig. 6. Graph for “Jean espère dormir”

though the derived tree, through its feature structures, shows the existence of
such a link (figure 5). We want to make this syntactic link between the nodes
denoted by α1 and α2 appear as stated by the dependency graph figure 6. For
this purpose we need to use the information present in the derived tree and
induced by the derivation tree.

We argue that a auxiliary tree anchored by a control verb (i.e Control Tree)
has to transfer its controlled argument directly to the tree in which it has been
adjoined. Therefore we must consider instead of visualizing tree projection in
the derivation tree as nodes, we shall see them as segments of graphs. For the
purpose of readability we introduce a new operation: Fusion of argument.

292 D. Seddah and B. Gaiffe

3 A Graph Vision of TAG Derivation

3.1 TAG Derivations and Incomplete Derivations

The only operations visible on a TAG derivation tree are substitution and ad-
junction because they mark the “jump” from one tree to another. We have to
develop a way to represent the missing link and the corresponding derivation it
implies. What information do we have ?

– We know the number of arguments (substitution nodes) in a tree ;
– We know from lexical information, which substitution nodes are going to

be transfered and to where. This information is called the control canvas,
defined in section 3.3, and is noted directly in this node.

– We know that a tree receives an argument coming from the adjunction of a
Control Tree.

Thus, we can refine the derivation process in order to include the information
defined above (cf. fig 7) : instead of working with node, we work with edges
and we use a variable box (noted as ?) to mark the fact that an argument is
missing and will be realized through the fusion operation. Once the argument
is substituted in tree β1, the fusion operation binds that same argument to the
variable box of tree α1. As the variable box in the elementary tree α1 is in
reality bounded to a node which dominates an empty node, we call this “false”
derivation an “incomplete derivation”.

According to [5], TAG derivations are dependencies which reveal deep syntac-
tic structure. So, the dependency graph we were referring to is in fact a derivation
graph.

?

α1

β1

ad
juncti

on

α2 fusio
n

α2

α1

ad
juncti

on

Syntactic analysis Dependency graph
after the the creation of the
missing link

β1

su
bs

tit
ut

io
n

su
bs

tit
ut

io
n

Fig. 7. Step of construction of derivation graph

How to Build Argumental Graphs 293

3.2 The Operation of Fusion

To explain the operation of fusion, we introduce a new abstraction layer which
encapsulates TAG derivation within the concept of argument realization.

This layer, composed with two types of transitions : argumental transitions
and transfer transitions, is the interface which allows us to make the link between
unrealized substitution and effective derivation.

For the sake of simplicity let us imagine we have in our hands a shared forest
defined as a context free grammar as defined by [12] plus a stack argument which
make this CFG much more like a LIG[13]. This supplementary stack argument
allows us to keep the order of the derived tree directly into this forest when
we parse this grammar top-down left-right, the derivation tree is also included
because the rules which mark an effective derivation are of course in the core of
the analysis [14].

The definition of the shared forest we use is given in section 5.1.
Each rule of this grammar is validated : when the rule appears in the proof

of an effective derivation7 an item is inferred into a chart. The set of these
items is the derivation forest minus the incomplete derivations. For example see
figure 8.

Argumental Transitions. For the substitution of a tree α onto a tree γ in its
node N , the derivation is called D1 and the item is < N, γ, α, subst > . It is
read as “Substitution of α on the node N of γ”.

We split this derivation into two more elementary transitions get and put.
The transition get means that a node needs an argument and the transition put
means that a tree is pushing a argument. For a “normal” substitution we get the
following decomposition (fig.9) :

We know that the derivation exists because the rule which we created has
been validated. We can also decompose the incomplete derivation testified by a
node N , from a tree γ, dominating a empty string. As we do not yet have any
node to co-index, the put transition will not appear (fig. 10). This derivation is
called D2 and the associated item is < N, ? , γ, subst >. This item is interpreted
as an argument needs to be linked to this node (fig. 10).

Transfer Transitions. While argumental transitions are managed by substi-
tution and thus demonstrate obligatory completion of argument and thus can
be predictable ; the transitions related to adjunction are completely different.

In this perspective, adjunction is almost the opposite of substitution : In case
of substitution, the get transitions were waiting for completion of put transition
(indicated by a down-oriented edge); in case of adjunction, we cannot predict
precisely where it will occur but is we can tell that an auxiliary tree will have
to adjoin somewhere. We indicate this fact by an up-oriented edge. This edge
must be linked to an already existing node. Let us define a tree β which adjoins

7 Effective derivation occurs when the nodes in the left part of a rule are from a
different tree than the right part, except when the rules mark a foot return transition.

294 D. Seddah and B. Gaiffe

α1

β1 β1

α2

α1

α1

α1

β1 β1

α2

β1

β1

β1

*

*

α1

β1

α2

α1

α2

β1 ?

Derivation Tree Shared Forest
Dependency Graph

(incomplete)

Derived Tree

Der. 0

Der. 3

Der. 1

Der. 0

Der. 3

Der. 1

Incomplete Der. (Der. 2)

Der. 2

N

jean

V

espere N

ε

V

dormir

P

P

P

N V

N

P

V

V

N V

N

P

P

P

Nα1

Nα1

s

ε dormir

espere

Jean

Fig. 8. Shared Forest with incomplete derivation

γ

su
bs

tit
ut

io
n

N

α

Fig. 9. Derivation D1 : < N, α, γ, subst >

on a node N of a tree γ. The derivation is called D′
3 and the associated item is

< N, β, γ, adj >. Figure 11 shows the process.
The fusion operation takes place in a particular context :

1. We have a Control Tree βc

2. This tree transfers its substitution node, as noted by its control-canvas, to a
tree γc

3. the tree γc has an unrealized substitution node

How to Build Argumental Graphs 295

γ

su
bs

tit
ut

io
n

N

?

Fig. 10. Derivation D2 : < N, ? , γ, subst >

γ

β

?

ad
ju

nc
tio

n

Fig. 11. Derivation D′
3 : < N, β, γ, adj >

This context can be translated formally in terms of derivations :

– The node Nβc
has the following control-canvas : i → j

– The derivation D1, marks the effective substitution of α on N i
βc

:

D1 : < N i, α, βc, subst >

– The derivation D2 marks an incomplete derivation of the unrealized substi-
tution on the node N of γc on the node N j of γc :

D2 : < N j , ? , γc, subst >

– The derivation D3 marks the adjunction of βc on the node X of γc :

D3 : < X,βc, γc, adj >

Thus, we can decompose the adjunction of βc on γc. The fusion operation is the
result of the application of the transitions defined above plus what we call a
catch transition whose only role is to match the argument to be linked (fig. 12).

Then in order to fill in the missing argument, one needs only create a new
inference rule which takes as parameters the three items D1, D2 and D3 to
provide a new derivation item, D4, which demonstrates the link between “jean”
and the unrealized substitution node.

296 D. Seddah and B. Gaiffe

put(α ,−,N)

get(γ ,arg−i,N)

γc

get(γ ,arg−j,N)

βc γc

?

?

su
bs

tit
ut

io
n

N
−

j

su
bs

tit
ut

io
n

α ?

βc

N
−

i

catch(, ,arg−i−>arg−j)

ad
ju

nc
tio

n
Fig. 12. Derivation D3 : < X, βc, γc, adj >

initial tree α auxiliary tree β anchored by control verb elementary tree γ

put(, N)αN

α arg−i = ?

i

βget(,arg−i,N)

Catch : arg−i −> arg−j β

N

β

X

*X
?arg−j =

j

ε

get(γ ,arg−j,N)
N

γ

X

Fig. 13. Transition attachment

Synthetic View of the Process. Let us consider the adjunction of β on γ
with α as the initial tree which substitutes onto the node Ni of β and which
must be transfered on γ (fig 13).

Fusion Process. The fusion process takes place in three steps while the shared
forest is validated. These steps are illustrated in figure 14 and are synthesized
by a new inference rule defined in the next section.

3.3 The Missing Link Creation

We claim that a Control Tree pushes its argument over an elementary tree which
is missing an argument.

The information indicating which Control Tree argument is to be pushed
(and where it is to be pushed) is lexical in nature.

How to Build Argumental Graphs 297

αarg−i =

αarg−i =

αarg−j =

αarg−j =

1

2

3

?arg−j =

αarg−j =

i

j

ε

accomplished transitions

accomplished transition

inferred transition

put(, N)α

put(, N)α

βget(,arg−i,N)

βget(,arg−i,N)

Catch : arg−i −> arg−j β

put(, N)α

get(γ ,arg−j,N)

get(γ ,arg−j,N)

put(, N)α

N

X

*X

γ

β

α

N

N

Fig. 14. Synthetic processus of argumental fusion

So, we defined a Control canvas associated to a Control Tree :
If an auxiliary tree controls its ith argument and transfers it into the jth

argument of an elementary tree (whose jth node dominates an empty string), we
mark this fact in the former (ith) node, as Ni → j ↓ 8.

Let a Control Tree βc, with root X, receive a substition of a tree α on its
node N whose control canvas is Ni → j ↓ (item D1). Let a tree γ, root X,
whose jth node N dominates an empty string (item D2), receive the adjunc-
tion of βc on its root (item D3). The new inference rule, the fusion opera-
tion, is:

D3 :< X, βc, γ, adj > D1 :< Ni→j , α, β, subst > D2 :< Nj , ? , γ, subst >

D4 :< Nj , α, γ, subst >

Once D4 (viewed as the new link), is inferred, D2 is erased. So the set of
these items can be seen as a graph9 described with co-referent links.

8 -John forbids Mary to sleep : N1 → 0 ↓ - John hopes to sleep : N0 → 0 ↓
9 this set also contains another kind of items : the item called head item which marks

an initial tree spawning the whole string (start item), defined as follow :
if a tree α of root X, covers the string between 0 and n, the length of the string to
be parsed, its derivation item, D0, is D0 : < X, α,−,− >

298 D. Seddah and B. Gaiffe

4 Conclusion

This proposition has been implemented in [14], its main characteristic is to make
an extensive use of the characteristic of a shared forest. For lack of space, we
have not presented the algorithms behind the generation of the shared forest.
The nodes which are used by the fusion operation to generate the missing links
are all nodes from the derivation tree, the node from the derived tree is the one
which supports an incomplete derivation.

We based our work on the fact that the shared forest contained both the
derived tree and the derivation tree. One of interesting properties is that using
item and chart inference rules to generate our derivation items allows us to main-
tain a shared structure of derivations which may contain all possible derivation
graphs in case of syntactic ambiguities. In fact, the structure we proposed could
be seen as the semantic counterpart of a classic shared forest[15].

The only addition to the initial TAG formalism is the control canvas. We
think that we can apply this process in order to deal with a restricted kind
of elliptic coordination such as “John loved Mary and slept alone” where the
subject of “to sleep” is the one of “to love”, we will just have to maintain a stack
of incomplete derivations to maintain the consistency of the fusion operation.

A knowledgements

We are very grateful to our anonymous reviewers for their valuable comments.
We also would like to thank Eric Kow and Jacqueline Lai for their proofreading
help.

References

1. Joshi, A.K.: Introduction to tree adjoining grammar. In Manaster-Ramer, A., ed.:
The Mathematics of Language, J. Benjamins (1987)

2. Abeillé, A.: Une grammaire lexicalisée d’arbres adjoints pour le français. PhD
thesis, Paris 7 (1991)

3. Candito, M.H., Kahane, S.: Can the tag derivation tree represent a semantic
graph ? In: Proceedings TAG+4, Philadelphie. (1998) 21–24

4. Schabes, Y., Shieber, S.: An alternative conception of tree-adjoining derivation.
Computational Linguistics 20 (1994) 91–124

5. Rambow, O., Joshi, A.K.: A Formal Look at Dependency Grammar and Phrase
Structure Grammars, with Special consideration of Word Order Phenomena. Leo
Wanner, Pinter London, 94 (1994)

6. Gardent, C., Kallmeyer, L.: Semantic construction in feature-based tag. In: Pro-
cedings of EACL 2003. (2003)

7. Franck, A., van Genabith, J.: Gluetag : Linear logic based semantics for ltag -and
what it teaches us about lfg and ltag-. In: Proceddings of the LFG01 Conference,
University of Hong Kong, Hong Kong. (2001)

8. Weir, D.: Characterizing Midly Context-Sensitive Grammar Formalisms. PhD
thesis, University of Pennsylvania (1988)

c

How to Build Argumental Graphs 299

9. Kallmeyer, L., Joshi, A.: Factoring predicate argument and scope semantics: Un-
derspecified semantics with ltag. In: Proceedings of the 12th Amsterdam Collo-
quium, December. (1999)

10. Kallmeyer, L.: LTAG Semantics with Semantic Unification. In: Proceedings of
TAG+7, To appears. (2004)

11. Abeilleé, A.: Verbes ”̀a monté” et auxiliaires dans une grammaire d’arbres adjoints.
LINX,Linguistique Institut Nanterre Paris X (1999)

12. Vijay-Shanker, K., Weir, D.: The use of shared forests in tree adjoining grammar
parsing. In: EACL ’93. (1993) 384–393

13. Aho, A.V.: Indexed grammars-an extension of context-free grammars. J. ACM 15
(1968) 647–671

14. Seddah, D.: Synchronisation des connaissances syntaxiques et sémantiques pour
l’analyse d’énoncés en langage naturel à l’aide des grammaires d’arbres adjoints
lexicalisées. PhD thesis, Université Henry Poincaré, Nancy (2004)

15. Billot, S., Lang, B.: The structure of shared forests in ambigous parsing. In: 33rd
Conference of the Association for Computional Linguistics (ACL’89). (1989)

5 Annex

5.1 Form of the Shared Forest

The definition of the shared forest we use is the result of the intersection of a
given TAG grammar and an linear automata as described by [12]. This definition
is extended in order to link the recognition of a subtree dominated by the node
which initiates an adjunction to the foot node of the adjoined tree. We represent
this forest with a context free grammar augmented by a stack containing the
current adjunctions, which is close to a Linear Indexed Grammar,[13].

Each part of the rules corresponds to an item a la Cock Kasami Younger
whose form is < N,POS, I,J, STACK > with N is a node of an elementary tree,
POS marks the situation relative to an adjunction (marked 2 if an adjunction
is still possible, ⊥ if the adjunction is not possible. This is marked on figure with
a bold dot in high position, 2, or a bold dot in low position, ⊥). I and J are
the start and end indices of the string dominated by the N node. STACK is
the stack containing all the call of the subtrees which has started an adjunction
et which must be recognized by the foot recognition rules. We used S as the
starting axiom of the grammar and n is the length of the initial string.

We show here only the rules relevant to derivation rules :

call transition rules
Call subst < ⊥, Nγ , i, j,−,−, Stack > −→ < 2, Nα, i, j,−,−, Stack >
Call adj < 2, Nγ , i, j,−,−, Stack > −→ < 2, Nβ , i, j,−,−, [Nγ |Stack] >
Call axiom S −→ < 2, Nα, 0, n,−,−, ∅ >
Call no subs < ⊥, Nγ , i, j,−,−, Stack > −→ true
Call foot < ⊥, ∗Nβ , i, j,−,−, [Nγ |Stack] > −→ < 2, Nγ , i, j,−,−, [Stack] >

300 D. Seddah and B. Gaiffe

The “Call subst” rule is the rule which starts the recognition of a substitution
of the initial tree α on the node N of the tree γ between the indices i and j.
“Call adj” starts the recognition of the adjunction of the auxiliary tree β on
the node N of an elementary tree γ between i and j. “Call axiom” starts the
recognition α of an elementary tree spawning the whole string. “Call no subs”
starts the recognition of a node N of a elementary tree γ dominating the empty
node between the indices i and j. “Call foot” starts the recognition of a subtree
dominated by the node Nγ between the indices i and j, the node Ngamma was
the start of the adjunction of the auxiliary tree β and ∗Nβ its foot node.

In order to avoid the “call adj” rule to be over generating, we control the
size of the stack by the number of possible adjunctions at a given state : if the
automata has no cycle and if each state of the automata goes forward (j always
superior to i), the number of possible adjunctions on a spine (the path between
the root of an auxiliary tree and its foot) is bounded by the length of the string
to analyse.

When Categorial Grammars Meet
Regular Grammatical Inference

Isabelle Tellier

GRAppA & Inria Futurs, Lille,
MOSTRARE project��

Université Lille 3,
59653 Villeneuve d’Ascq, France

isabelle.tellier@univ-lille3.fr

Abstract. In this paper, we first study the connections between sub-
classes of AB-categorial grammars and finite state automata. Using this,
we explain how learnability results for categorial grammars in Gold’s
model from structured positive examples translate into regular grammat-
ical inference results from strings. A closer analysis of the generalization
operator used in categorial grammar inference shows that it is strictly
more powerful than the one used in usual regular grammatical inference,
as it can lead outside the class of regular languages. Yet, we show that
the result can still be represented by a new kind of finite-state generative
model called a recursive automaton. We prove that every unidirectional
categorial grammar, and thus every context-free language, can be repre-
sented by such a recursive automaton. We finally identify a new subclass
of unidirectional categorial grammars for which learning from strings is
not more expensive than learning from structures. A drastic simplifica-
tion of Kanazawa’s learning algorithm from strings for this class follows.

1 Introduction

Grammatical inference deals with the problem of how to infer a grammar from
examples of sentences it generates - and from sentences it does not generate, if
negative examples are available. In the grammatical inference community (see
the ICGI conference), many efforts have concerned the learnability of subclasses
of regular grammars, represented by finite state automata [1, 13, 8, 7].

The inference of context-free grammars is more difficult and has received
less attention. The most achieved work in this domain is Kanazawa’s [12], who
proved learnability results of large subclasses of AB-categorial grammars in
Gold’s model from positive examples [9]. These results concern two kinds of
input data: strings and structural examples, i.e. syntactic analysis structures

�� This research was partially supported by: “CPER 2000-2006, Contrat de Plan état -
région Nord/Pas-de-Calais: axe TACT, projet TIC”; fonds européens FEDER “TIC
- Fouille Intelligente de données - Traitement Intelligent des Connaissances” OBJ
2-phasing out - 2001/3 - 4.1 - n 3. And by “ACI masse de données ACIMDD”.

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 301–316, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

302 I. Tellier

where intermediate categories are deleted. But these results are hardly useful,
because (except in very restricted cases) the corresponding algorithms have a
high complexity [5, 6]. Surprisingly enough, nobody seems to have ever tried to
translate these results into the more restricted class of regular grammars. The
main characteristic of this class is that it produces only flat trees. We can prove
easily that, in this context, structural examples are available for free when strings
are available. So, it is worth considering how learnability results for subclasses
of AB-categorial grammars from structural examples translate into learnability
results for subclasses of regular grammars from strings.

In this paper, we first study how finite state automata translate into cate-
gorial grammars, and conversely. We compare learning strategies used in both
domains. Doing so, we compare the relative power of the usual generalization
operator of “state fusion”, used in traditional regular grammatical inference and
the generalization operator of “unifying substitutions on variables” used in cate-
gorial grammar learning. We prove that the latter is strictly more powerful than
the former, as it sometimes allows to transform a categorial grammar generating
a regular language into a categorial grammar generating a context-free grammar.
Yet, in this case, it is still possible to represent the result of the operator as a
generalized automaton. This leads to the definition of a new class of automata,
called recursive automata. This class, which is a natural extension of finite state
automata, has at least the expressive power of unidirectional categorial gram-
mars, and can thus generate every context-free language.

This article thus proposes to unify grammatical inference results coming from
two different traditions: the one focusing on finite state automata, and the one
focusing on AB-categorial grammars, showing that they can both benefit from
ideas coming from the other one.

2 Finite State Automata and Categorial Grammars

In this section, we first recall basic definitions concerning finite state automata
and AB-categorial grammars, and show that there are easy correspondences
between them.

2.1 Finite State Automata and Regular Languages

We recall here the classical notations for automata and regular languages.

Definition 1 (Finite State Automaton (FSA) and their Language). A
finite state automaton (FSA in the following) A is a 5-tuple A = 〈Q,Σ, δ, q0,
F 〉 such that Q is the finite set of states of A, Σ its finite vocabulary, q0 ∈ Q
is the initial state of A (we restrict ourselves to automata with a unique initial
state) and F ⊆ Q is the set of its final states. Finally, δ is the transition function
of A, defined from Q×Σ to 2Q.

The language L(A) recognized by A is defined as: L(A) = {w ∈ Σ∗|δ∗(q0, w)∩
F �= ∅}, where δ∗ is the natural extension of δ on Q × Σ∗ such that: for any
a ∈ Σ, any u ∈ Σ∗ and any q ∈ Q, δ∗(q, au) = {δ∗(q′, u)|q′ ∈ δ(q, a)}.
The set of languages recognized by FSA is called the set of regular languages.

When Categorial Grammars Meet Regular Grammatical Inference 303

0 1 2
a b

a

b

Fig. 1. A Simple Finite State Automaton

Example 1. Figure 1 displays a simple FSA A such that L(A) = a+b+.

2.2 Grammars and Categorial Grammars

We recall the classical definitions of a generative grammar, and of categorial
grammars. Here, we restrict ourselves to AB-(or classical) categorial grammars.

Definition 2 (Generative Grammars and their Language). A gener-
ative grammar (or simply a grammar in the following) is a 4-tuple G =
〈Σ, N, P, S〉 with Σ the finite terminal vocabulary of G, N its finite non ter-
minal vocabulary, P ⊂ (Σ ∪ N)+ × (Σ ∪ N)∗ its finite set of rules and S ∈ N
the axiom.

The language generated by a grammar G is L(G) = {w ∈ Σ∗|S −→∗ w}
where −→∗ is the reflexive and transitive closure of the relation defined by P .

Definition 3 (Categories, AB-Categorial Grammars and their Lan-
guage). Let B be a set (at most countably infinite) of basic categories containing
a distinguished category S ∈ B, called the axiom. We note Cat(B) the smallest
set such that B ⊂ Cat(B) and for any A,B ∈ Cat(B) we have: A/B ∈ Cat(B)
and B\A ∈ Cat(B).

For every finite vocabulary Σ and for every set of basic categories B (S ∈ B),
a categorial grammar is a finite relation G over Σ×Cat(B). We note 〈v,A〉 ∈
G the assignment of the category A ∈ Cat(B) to the element of the vocabulary
v ∈ Σ. AB-categorial grammars (CGs in the following) are categorial grammars
where the syntactic rules take the form of two rewriting schemes: ∀A,B ∈ Cat(B)

– FA (Forward Application) : A/B B → A
– BA (Backward Application) : B B\A → A

The language generated (or recognized) by a CG G is:
L(G)={w = v1 . . . vn ∈ Σ+ | ∀i ∈ {1, . . . , n}, ∃Ai ∈ Cat(B) such that 〈vi, Ai〉 ∈
G and A1 . . . An →∗ S}, where →∗ is the reflexive and transitive closure of →.

Example 2. For example, let B = {S, T,CN} (where T stands for “term” and
CN for “common noun”), Σ = {John, runs, loves, a, cat} and G be defined by:
G = {〈John, T 〉, 〈runs, T\S〉, 〈loves, (T\S)/T 〉, 〈loves, T\(S/T)〉, 〈cat, CN〉,
〈a, (S/(T\S))/CN〉, 〈a, ((S/T)\S)/CN〉}. This CG generates sentences like
“John runs”, “John loves a cat”, etc.

304 I. Tellier

Definition 4 (FA-Structures, Structural Examples, Structured Lan-
guage). A functor-argument (or FA-) structure over an alphabet Σ is
a binary-branching tree whose leaf nodes are labeled by elements of Σ and whose
internal nodes are labeled either by BA or FA. The set of FA-structures over Σ
is denoted ΣF .

For any AB-categorial grammar G ⊂ Σ×Cat(B), a structural example for G
is an element of ΣF which can be obtained from the analysis tree resulting from
a syntactic parsing of a string w ∈ L(G) in G by deleting each of its categories.
For any CG G ⊂ Σ×Cat(B), the structured language FL(G) associated with G
is the set of structural examples for G.

G denotes the class of CGs. For every integer k ≥ 1, the set of CGs assigning
at most k distinct categories to each member of the vocabulary is the class
of k-valued CGs denoted by Gk. When k = 1 the grammars are also called
rigid.

2.3 From Automata to Categorial Grammars and Back

The expressive power of CGs is the one of ε-free (ε is the empty string) context-
free languages [2]. So, of course, they can also generate ε-free regular languages.
Correspondences between FSA and CGs are easy to define.

Definition 5 (Regular CGs). We call a regular CG a CG G ⊂ Σ×Cat(B)
that only contains assignments of the form 〈v,A〉 or 〈v,A/B〉 with v ∈ Σ
and A,B ∈ B. The set of regular CGs is noted Gr.

Property 1 (Transformation of an Automaton). Let A = 〈Q,Σ, δ, q0, F 〉 be a
FSA. Let B = (Q\{q0}) ∪ {S} (where S /∈ Q). It is possible to define a regular
CG G ⊂ Σ × Cat(B) such that L(G) = L(A)\{ε}.

Proof (Proof of Property 1). This property is the consequence of sequentially ap-
plying the classical transformation of a FSA A into a left-linear regular grammar
G1 = 〈Σ,Q, P1, S〉, then applying the transformation of G1 into a CG: ∀a ∈ Σ
and ∀q, q′ ∈ Q such that q′ ∈ δ(q, a) do:

– if q′ ∈ F then
• q −→ a is a rule of G1 (element of P1) and 〈a, q〉 ∈ G (replace q0 by S);
• if ∃u ∈ Σ, ∃q′′ ∈ δ(q′, u) then q −→ aq′ is a rule of G1 and 〈a, q/q′〉 ∈ G

(replace q0 by S);
– else q −→ aq′ is a rule of G1 and 〈a, q/q′〉 ∈ G (replace q0 by S).

ε ∈ L(A) if and only if q0 ∈ F . This situation gives rise to a new rule S −→ ε
in P1. But in CGs, it is impossible to assign a category to ε, so this rule has no
counterpart in G. So, we have: L(A)\{ε} = L(G1)\{ε} = L(G). �

Example 3. Let us apply the previous process to the FSA given in Example
1. The rules of the corresponding left-linear regular grammar are the following
(where the state of number i is associated with a non terminal symbol noted

When Categorial Grammars Meet Regular Grammatical Inference 305

Qi, with Q0 = S): S −→ aQ1, Q1 −→ aQ1, Q1 −→ b, Q1 −→ bQ2, Q2 −→ b,
Q2 −→ bQ2. And the CG G is:

G = {〈a, S/Q1〉, 〈a,Q1/Q1〉, 〈b,Q1〉, 〈b,Q1/Q2〉, 〈b,Q2〉, 〈b,Q2/Q2〉}.

So, FSA can easily be lexicalized. Note that the only operator used in categories
of a regular CG is / and the only useful rule is FA (it would have been \ and BA
if we had first transformed the automaton into a right-linear regular grammar).
In fact, the previous transformation preserves not only the string language, but
also the structured language. A crucial consequence is that structural examples
in the sense of Definition 4 are available for free from the corresponding strings:
underlying structures produced by automata are always flat, and the only label
for internal nodes is FA.

Example 4. Figure 2 displays two analysis trees produced by the CG obtained
in Example 3, and (on the right) the corresponding structural examples.

S
FA

S/Q1
a

Q1
b

FA

a b

S
FA

S/Q1
a

Q1
FA

Q1/ Q1
a

Q1
FA

Q1/ Q2
b

Q2
b

FA

a FA

a FA

b b

Fig. 2. Syntactic Analyses and the corresponding Structural Examples

Property 2 (Transformation of a Regular AB-Categorial Grammar). Every reg-
ular CG G ⊂ Σ × Cat(B) can be transformed into a FSA A = 〈Q,Σ, δ, q0, F 〉
recognizing the same (ε-free) language.

Proof (sketch of the proof of Property 2). This transformation is the reverse of
the one described in Property 1: the only thing to pay attention to is to add
a unique final state FA in A. Let Q = B ∪ {FA} with FA /∈ B, q0 = S and
F = {FA}. Each assignment 〈a, U/V 〉 ∈ G corresponds to a transition labelled

306 I. Tellier

by a between the states U and V in A (so: δ(U, a) = V) and each assignment
〈a, U〉 ∈ G to a transition labeled by a between U and FA (δ(U, a) = FA). �
Example 5. The automaton built by applying this operation to the CG obtained
in Example 3 is given in Figure 3. It is not exactly the same as the initial one
(in Example 1), because of the final state added to the states coming from basic
categories. The result is, usually, nondeterministic.

S 1 2

F

a b

b
b

a

b

Fig. 3. The Automaton Obtained from the AB-Categorial Grammar

Remark 1. Properties 1 and 2 do not mean that only the CGs that are regular
generate a regular language. The CG of Example 2 is not regular in the sense
of Definition 5 but it generates a finite (and thus regular) language. But the
structures it produces are not flat.

Property 3 (Language Associated with a State). Let G be a regular CG and
A be the automaton obtained from it. Then for any basic category Q of G
(corresponding to a non-final state Q of A, S = q0), we have two equivalent
ways to define the language L(Q) associated with Q:
L(Q) = {w = v1 . . . vn ∈ Σ+ | ∀i ∈ {1, . . . , n} ∃Ai ∈ Cat(B) such that 〈vi, Ai〉 ∈
G and A1 . . . An →∗ Q} and L(Q) = {w ∈ Σ+|FA ∈ δ+(Q, w)}.
Proof (sketch of proof of Property 3). The proof is an easy consequence of Prop-
erties 1 and 2, where Q replaces S. �

The second definition of state language slightly differs from the classical one,
because it excludes ε (we know that Q �= FA so ε /∈ L(Q)) and uses the fact
that there is only one terminal state FA in A. So, strings in L(Q), which can be
associated with the category Q in G, also correspond in A to strings produced
by following a path starting from the state Q and reaching the final state FA.
Of course, if Q = q0 = S, we have: L(S) = L(A) = L(G).

Example 6. In the automaton of Figure 3, L(Q1) = a∗b+ and L(Q2) = b+.

3 Inference of CGs from Positive Examples

The learnability of CGs in Gold’s model from positive examples has received
great attention in the last years. Now that we have an easy translation of a
subclass of such grammars (the subclass of the regular ones) into automata, it
is natural to see how these results translate into regular language learning, to
compare them with known results in this domain.

When Categorial Grammars Meet Regular Grammatical Inference 307

3.1 Gold’s Model

To deal with questions of learnability, Kanazawa [12] introduced the notion of
grammar system, allowing a reformulation of Gold’s model of identification in
the limit from positive examples [9]. We recall this notion here.

Definition 6 (Grammar System). A grammar system is a triple 〈Ω, Λ, L〉
made of a hypothesis space Ω (here, Ω will be a set of grammars), a sample space
Λ, which is a recursive subset of A∗, for some fixed alphabet A (elements of Λ
are sentences and subsets of Λ are languages) and L : Ω → pow(Λ) is a naming
function. The question of whether w ∈ L(G) which holds between w ∈ Λ and
G ∈ Ω, is supposed to be computable.

The main grammar systems we deal with in the following of this paper are
〈G,Σ∗, L〉 and 〈G,ΣF , FL〉. The first one concerns the learnability of CGs from
strings and the second one the learnability of CGs from structural examples.

Definition 7 (Learnability Criterion). Let 〈Ω, Λ, L〉 be a grammar system
and φ : ∪k≥1Λ

k → Ω be a computable function. We say that φ converges to
G ∈ Ω on a sequence 〈si〉i∈N of elements of Λ if Gi = φ(〈s0, ..., si〉) is defined
and equal to G for all but finitely many i ∈ N - or equivalently if there exists
n0 ∈ N such that for all i ≥ n0, Gi is defined and equal to G. Such a function φ
is said to learn G ⊆ Ω if for every language L in L(G) = {L(G)|G ∈ G} and for
every infinite sequence 〈si〉i∈N that enumerates the elements of L (i.e. such that
{si|i ∈ N} = L), there exists some G in G such that L(G) = L and φ converges
to G on 〈si〉i∈N.

Theorem 1 (Learnability of Gk [12]). For any k ≥ 1, the class Gk of k-
valued CGs is learnable in the grammar systems 〈G,Σ∗, L〉 (i.e. from strings)
and 〈G,ΣF , FL〉 (i.e. from structural examples).

3.2 Categorial Grammars and Regular Grammatical Inference

Of course, Theorem 1 holds for k-valued regular CGs. In this section, we first
translate Kanazawa’s results into regular grammatical inference. We then show
the equivalence between two other known results in the case of regular CGs.

Theorem 2 (Learnability of k-valued Regular CGs). For every k ≥ 1, the
class of k-valued regular CGs Gk ∩ Gr is learnable from structural examples and
from strings.

Proof (Sketch of Proof of Theorem 2). This is a direct consequence of Theorem
1, restricted to the class Gr. To learn regular k-valued CGs from strings, you just
have to apply the BP learning strategy from structural examples that are flat
trees with FA internal nodes, then to select among the output the CGs that are
isomorph with a regular CG (which is decidable) before performing the inclusion
tests. �

308 I. Tellier

It is interesting to notice that, in the case of regular CGs, unlike in the case
of general CGs, strings and structures are equivalent - that is, structures are
available for free from strings. This is the idea we will try to generalize for larger
classes of CGs in the following section.

Unfortunately, this class of grammars is not very interesting. As a matter of
fact, if k is given, it is also a bound on the maximal number of transitions labeled
by the same element of vocabulary in the corresponding FSA: there exists a finite
number of distinct automata satisfying this condition, so the learnability result
is in fact trivial.

Nevertheless, the notion of k-valued automaton, i.e. FSA which are the result
of applying the process of Property 2 to k-valued regular CGs is original. As
a matter of fact, it focuses on the total number of transitions labeled by the
same symbol in an automaton, instead of focusing on the total number of states
in this automaton. k-valued automata seem well adapted to large alphabets Σ
(especially when k is small), which contrasts with usual classes of automata (and
usual learning algorithms) considered in the field of regular inference.

Other interesting results worth being compared: the one concerning the class
of 0-reversible FSA [1] and the one concerning the class of reversible CGs [3].

Definition 8 (0-Reversibility of a FSA [1]). A FSA is said to be 0-reversible
if and only if it is deterministic and the automaton obtained by reversing the
transitions backwards is also deterministic.

Definition 9 (Reversibility of a CG [3]). A CG is said to be reversible
if it does not contain two assignments of categories for the same element of
vocabulary, which are distinct by only one basic category.

Theorem 3 (Equivalence of these Reversibility Notions). Let G be a
regular CG and A be the FSA obtained from it. A is 0-reversible in the sense of
Definition 8 if and only if G is reversible in the sense of Definition 9.

Proof (Sketch of Proof of Theorem 3). This property is a direct consequence
of Theorem 2. As we only considered automata with a unique initial state and
no ε transition, the conditions for A to be deterministic only concern transitions
starting from the same state and labeled by the same symbol. They are equivalent
for G with the following ones: ∀a ∈ Σ

– ∀Q1,Q2,Q3 ∈ B: 〈a,Q1/Q2〉 ∈ G and 〈a,Q1/Q3〉 ∈ G ⇔ Q2 = Q3.
– ∀Q1,Q2 ∈ B: 〈a,Q1〉 ∈ G and 〈a,Q1/Q2〉 ∈ G ⇔ Q2 = FA (in fact, 〈a,Q1〉

stands for 〈a,Q1/FA〉);

Similarly, as A has only one final state, the conditions for the reversed automaton
to be deterministic are equivalent with the following ones: ∀a ∈ Σ

– ∀Q1,Q2 ∈ B: 〈a,Q1〉 ∈ G and 〈a,Q2〉 ∈ G ⇔ Q1 = Q2

– ∀Q1,Q2,Q3 ∈ B: 〈a,Q1/Q2〉 ∈ G and 〈a,Q3/Q2〉 ∈ G ⇔ Q1 = Q3.

For regular CGs, these conditions coincide with the one of Definition 9. �

When Categorial Grammars Meet Regular Grammatical Inference 309

So, the learnability of the class of 0-reversible FSA from strings [1] is equiv-
alent with the one concerning the class of reversible CGs [3] from structures, in
the special case of regular CGs. The corresponding learning algorithms should
be more carefully compared, but they also seem equivalent.

3.3 Learning Algorithm

The learnability results of Theorem 1 are not only theoretical ones. The orig-
inal algorithm BP able to identify the set of k-valued CGs without useless
category compatible with a set of structural examples is due to Buszkowki &
Penn [4]. We briefly recall it here, exemplifying it on a set of flat structural
examples.

To identify every k-valued CG compatible with a given sample D of structural
examples, the first steps are the following for each element of D:

1. introduce a label S at the root of each structural example;
2. introduce a distinct variable xi at each argument node (i.e. at the left daugh-

ter of each BA node and at the right daughter of each FA node);
3. introduce a fractional category at every other node, respecting the labels of

the functional application (FA or BA) to be applied.

The result of collecting all the categories associated with each distinct mem-
ber of the vocabulary after these steps is a CG called the general form of D
and noted GF (D).

Example 7. Let D be the couple of structural examples given in Example 4. The
previous process gives the result of Figure 4, and GF (D) is defined as follows:

– a: S/x1, S/x4, x4/x3;
– b: x1, x3/x2, x2.

The corresponding FSA is given in Figure 5: it very much looks like what is
known in regular grammatical inference as the maximal canonical automa-
ton MCA(D): the only difference is that the FSA corresponding to GF (D)
has a unique initial state and a unique final state. It is generally not deter-
ministic.

Then, substitutions that unify category assignments are searched for.

Definition 10 (Variable Categories and Substitutions). Let χ be an enu-
merably infinite set of variables and B = χ ∪ {S}. A substitution is a function
σ : χ −→ Cat(B) that maps variables to categories (it is initialized by the Iden-
tity function on χ). A substitution is extended to a function from categories
to categories as follows: (i) σ(S) = S, (ii) σ(A/B) = σ(A)/σ(B) and (iii)
σ(A\B) = σ(A)\σ(B) for any A,B ∈ Cat(B). Similarly, a substitution is nat-
urally extended to apply to a CG: ∀G ∈ G, σ(G) = {〈v, σ(A)〉|〈v,A〉 ∈ G}. For
any CG G, a unifying substitution for G is a substitution that unifies categories
assigned to the same element of the vocabulary in G.

310 I. Tellier

S
FA

S/x1
a

x1
b

S
FA

S/x4
a

x4
FA

x4/ x3
a

x3
FA

x3/ x2
b

x2
b

Fig. 4. First Step of the Learning Algorithm

x1

S F

x4 x3 x2

a b

a
a b

b

Fig. 5. The Automaton Corresponding with GF (D)

Property 4 (Fundamental Property [4]). For any CG G, the following two prop-
erties are equivalent: (i) D ⊆ FL(G) and (ii) ∃σ such that σ[GF (D)] ⊆ G.

In other words, CGs whose structured language is compatible with the input
D are those which contain a substitution of GF (D). If the target grammar is
k-valued, the learning strategy BP thus only consists in finding every possible
unifying substitution σ such that the grammar σ[GF (D)] is k-valued. If k = 1,
the learning process is incremental and the target grammar, if it exists, is unique
and available in the limit. If k > 1, a remaining problem is to select one grammar
among the set. This is performed by inclusion tests on the structured languages
of the candidates (or by bounded inclusion tests for string languages). We will
not go into further details about this final step.

Applying a substitution on a CG is a generalization operation, because we
have the following property [4]: σ(G1) ⊆ G2 =⇒ FL(G1) ⊆ FL(G2). So we
always have: FL(G) ⊆ FL(σ(G)) and, similarly, L(G) ⊆ L(σ(G)). But in usual
regular grammatical inference, the most often used generalization operator is
the one of state merging [1, 13, 8]. What is the link between these two operators
? In the context of a set D containing only flat structures with internal nodes
FA, GF (D) is necessarily a regular CG (see Example 7). So, only two cases can
occur to unify two categories:
– conditions of the form σ(xi) = σ(xj) = xj for any xi ∈ χ and any xj ∈
χ ∪ {S} specify a state merging: states xi and xj are merged.

When Categorial Grammars Meet Regular Grammatical Inference 311

– conditions of the form σ(xi) = xj/xk, for any xi ∈ χ and any xj , xk ∈ χ∪{S}
are more difficult to understand. Such a condition means two things:
• the state xi must be renamed as a state called xj/xk;
• every string that could be associated with the category xi in the grammar

GF (D) can now be used as a “transition” between the states xj and xk.

Example 8. For example, let us define a substitution σ that unifies some of the
categories assigned to a and b in the grammar GF (D) of Example 7 as follows:
σ(x4) = σ(x1) = x3/x2 (and σ is the identity elsewhere). The resulting CG
σ(GF (D)) is the following:

– a: S/(x3/x2), (x3/x2)/x3;
– b: x3/x2, x2.

This CG is no longer regular. Nevertheless, it can be represented in a generalized
automaton by adding a “recursive transition”, that is a transition labeled by a
state (here, the state x3/x2). The corresponding automaton is given in Figure 6.

x3/x2

S F

x3 x2

a b

a
x3/x2

b

Fig. 6. The Generalized Automaton Corresponding with σ(GF (D))

In this automaton, previous states x1 and x4 were merged and renamed as
x3/x2, and a new “recursive” transition labeled by x3/x2 replaces the one that
was labeled by b between the states x3 and x2. To use this new transition, you
need to produce a string of category x3/x2, that is a string that belongs to the
state language of x3/x2. According to Property 3, another way to characterize
such a string is that it would be obtained by following a path from the state x3/x2

to the final state F . To follow such a path, the first possible choice is, of course,
the direct transition labeled by b. But another possible choice is to reach x3 by
a where the previous choice is posed again. Of course, a stack is necessary to
remember the list of recursive transitions used. The language recognized by this
generalized automaton is anbn, which is not regular. This generalized automaton
can be considered as a special case of Recursive Transition Network.

To understand how such a generalization could occur, let us look at the
analysis tree produced by the grammar for the string aaabbb, given in Figure 7.

This tree is no longer flat. To understand how it was built, look back at the
second tree of Figure 4. The specification of σ(x4) = x3/x2 provides an equality
between labels of this tree: the label of an internal node (x4) becomes equal to the
label of a leaf (x3/x2). This equality opens the possibility to insert the subtree
rooted by x4 in the place of the leaf labeled by x3/x2, as is done in Figure 7.
This operation is exactly what is called an adjunction, in the formalism of Tree
Adjoining Grammars [11].

312 I. Tellier

S
FA

S/(x3/x2)
a

x3/x2
FA

(x3/x2)/ x3
a

x3
FA

x3/x2
FA

(x3/x2)/ x3
a

x3
FA

x3/ x2
b

x2
b

x2
b

Fig. 7. Syntactic Analyses Tree for aaabbb

4 Learning CF-Languages from Flat Structures

Example 8 suggested that it is possible to generalize real trees from flat trees
and to represent context-free languages by a recursive automaton. This section
is dedicated to the formalization of these ideas, and to the study of their con-
sequences to improve Kanazawa’s learning algorithm from strings, when it is
possible.

4.1 Recursive Automata an Their Expressivity

Definition 11 (Recursive Automaton). A recursive automaton (RA in
the following) R is a 5-tuple R = 〈Q,Σ, γ, q0, F 〉 such that Q is the finite set
of states of R, Σ is its finite vocabulary, q0 ∈ Q its (unique) initial state and
F ∈ Q its (unique) final state. γ is the transition function of R, defined from
Q× (Σ ∪Q) to 2Q.

The only important difference between FSA and RA is that, in a RA, it is
possible to label a transition by an element of Q. We call such a transition a
recursive transition. To use a recursive transition labelled by q ∈ Q, you have
to produce an element of L(q). We restrict ourselves to RA with a unique initial
state and a unique final state, but it is not a crucial choice. As we consider ε-free
languages, it is supposed that F �= q0.

Definition 12 (Language Recognized by a RA). Let R = 〈Q,Σ, γ, q0, F 〉
be a recursive automaton. The language L(R) recognized by R is defined as:

When Categorial Grammars Meet Regular Grammatical Inference 313

L(R) = {w ∈ Σ+|F ∈ γ+(q0, w)}, where γ+ is the natural extension of γ on
Q × Σ+, i.e. for any u ∈ Σ+ and v ∈ Σ∗ any q ∈ Q, γ+(q, uv) is the smallest
subset containing {γ∗(q′, v)|q′ ∈ γ(q, u)} if u ∈ Σ and {γ∗(q′, v)|∃t ∈ Q such
that q′ ∈ γ(q, t) and u ∈ L(t)} else, where L(t) is the state language of t.

RA also produce structures. These structures are not necessarily flat, because
recursive transitions allow a real branching. A real recursivity occurs when there
exists a path starting from a state q ∈ Q, using a recursive transition labelled
by q and reaching the final state (as it was the case for x3/x2 in Figure 6).

Theorem 4 (From Unidirectional GCs to RA). A unidirectional CG only
assigns categories that are either basic or built from the operator /. The set of
unidirectional CGs is noted GU . Every G ∈ GU can be transformed into a strongly
equivalent RA, i.e. a RA generating the same structured language.

Proof (Proof of Theorem 4). It is well known [10] that any CG G ⊂ Σ×Cat(B)
can be transformed into a strongly equivalent context-free grammar in Chomsky
Normal Form H = 〈Σ, N, P, S〉 in the following way: N is the set of every
subcategory of a category assigned to a member of the vocabulary in G (a
category is a subcategory of itself). Then, for every 〈v,A〉 ∈ G, let A −→ v ∈ P
and for all A,B in N , let A −→ A/B B ∈ P (for unidirectional CGs, this is
enough). The set of states of our RA R is the set N ∪{F}, with F /∈ N . Rules of
the form A −→ v correspond to a transition labelled by v between the state A
and the final state F . Rules of the form A −→ A/B B correspond to a recursive
transition labelled by A/B between states A and B. The use of a rule of this
form in a derivation in G means that a subtree rooted by A can be decomposed
into two subtrees: one rooted by A/B and one rooted by B. This is exactly what
is also expressed by the corresponding recursive transition in R. �

Corollary 1. Unidirectional CGs can generate every ε-free context-free lan-
guage [2]. So, it immediately follows from Theorem 4 that every ε-free context-free
language can also be generated by a RA.

Example 9. The classical unidirectional CG recognizing the language anbn, n ≥
1, is the following: G = {〈a, S/B〉, 〈a, (S/B)/S〉, 〈b,B〉}. The corresponding RA
(distinct from the one of Example 8) is given in Figure 8. This RA can be sim-
plified: the recursive transitions that are not really recursive can be lexicalized.
Here, you can delete the state (S/B)/S and replace the label of the recursive
transition between S/B and S by a. But it is not possible for the state S/B.

The main interest of RA is that they produce the same structures as the ones
produced by unidirectional CGs, i.e. using only FA rules. So, we hope to infer
them from flat trees, like in Example 8. The problem is that the RA obtained
from the process exemplified in Example 9 does not belong to the search space of
any set of flat trees, because of the states that are not reachable from the initial
state. So, we will need a more constraint form for RA (or for unidirectional CGs).

314 I. Tellier

S/B (S/B)/S

S B F
S/B b

(S/B)/S

a

a

Fig. 8. Another RA recognizing anbn

4.2 Learning Unidirectional CGs from Flat Structure

When only strings are available, Kanazawa’s learning strategy consists in gen-
erating every possible structural example compatible with the input data, then
applying the process described in section 3.3. It is a very expensive strategy, not
tractable in practice. On the basis of the previous examples, we propose to refine
Kanazawa’s learning strategy to learn CF-languages from strings.

Definition 13. A CG G is said to have no useless category if every assignment
of a category to a member of the vocabulary is used in at least one syntactic
analysis of an element of L(G) (G is also said to be in reduced form [12]). Let:
Gk,σ = {σ(G)|G ∈ Gk ∩ Gr and G has no useless category and σ is a unifying
substitution for G}.

Of course, for every k ≥ 1, Gk,σ ⊆ Gk ∩ GU and
⋃

k≥1{L(G)|G ∈ Gk,σ} has a
non null intersection with the set of non-regular CF-languages (see Example 8).
But we do not know whether it can generate every CF-language.

The problem is that the notion of accessibility in a RA is different from
the notion of accessibility in a FSA, because of recursive transitions. A state
which is not accessible in a FSA (corresponding with a useless category in the
corresponding CG) can become accessible after a substitution has been applied.

For every k, the main interest of the class Gk,σ is that it naturally extends the
class Gk∩Gr, whose fundamental property is that its members produce structural
examples that are flat trees with FA internal nodes only. This property can be
used to adapt Kanazawa’s standard learning algorithm, as explained below.

Theorem 5. For every k ≥ 1, for every G ∈ Gk,σ, there exists a set D of flat
structures with FA internal nodes and there exists τ , a unifying substitution for
GF (D) such that G = τ(GF (D)).

Proof (proof of Theorem 5). For every G ∈ Gk,σ, by definition there exists G′ ∈
Gk ∩ Gr without useless category and σ a unifying substitution for G′ such that
G = σ(G′). We know by Theorem 2 that Gk ∩ Gr is learnable from structural
examples and from strings. Let D be a characteristic set of structural examples
for G′ (see [12]). G′ is regular, so D is only made of flat structures with FA
internal nodes. G′ has no useless category, so it belongs to the result of the
BP algorithm [12] whose inputs are k and D. This means that there exists a

When Categorial Grammars Meet Regular Grammatical Inference 315

unifying substitution ρ for GF (D) such that G′ = ρ(GF (D)). So G = σ(G′) =
σ(ρ(GF (D)). Let τ = σ ◦ ρ, which is a unifying substitution for GF (D). �

Theorem 5 means that the members of Gk,σ admit a characteristic sample
made of only flat structures, and that they belong to the result of the BP al-
gorithm whose input is this characteristic sample. This suggests an adaptation
of Kanazawa’s standard algorithm to learn the class Gk,σ from strings (see Al-
gorithm 1). The main difference between this algorithm and Kanazawa’s is that
not all binary branching structures need to be associated to each string: it is
enough to associate flat structures with FA internal nodes. But, to ensure the
convergence of this algorithm, flat structures will be associated only to input
strings not already recognized (associated with any structure) by the current
hypothesis grammars (remember that a3b3 is recognized by the CG of Example
8 but not with a flat structure).

Algorithm 1 algorithm to compute elements of Gk,σ generating 〈s0, ..., si〉
Require: 〈s0, ..., si〉 where ∀i, si ∈ Σ+ and k
1: j ←− 0
2: repeat
3: Cj = {s0, ..., sj} \\ try Cj as a characteristic sample
4: associate a flat structure with FA internal nodes to every element of Cj

5: apply BP algorithm to find the set Rj,k ⊂ Gk of CGs compatible with this set
6: discard all elements of Rj,k whose string language does not include {sj+1, ..., si}
7: j ←− j + 1
8: until j = i + 1 OR Rj,k �= ∅

Ensure: Rj,k: a set of CGs in Gk,σ whose string language includes 〈s0, ..., si〉

Elements of Gk,σ are obtained by applying unifying substitutions to k-valued
CG, so they are also at most k-valued. But the k needed by Algorithm 1 may
be greater than the one needed by the BP algorithm. Grammars in Gk,σ can
be considered as having a special normal form: they produce only flat trees or
trees that are the result of adjunctions on flat trees (cf Example 8). Theorem
5 ensures that as soon as the input includes a set of strings corresponding to a
characteristic sample of flat structures with FA nodes (which will always occur
in the limit), then for some j, the set Rj,k contains at least one CG generating
the target language. Inclusion tests are still necessary to select one grammar.

5 Conclusion

To conclude, this study shows that the domain of regular grammatical inference
and the domain of CGs learning can be integrated into a unified framework. The
first benefits of this unification is the translation of results from one domain to
the other one with very few efforts, and a better understanding of the nature of
the generalization operator used in the BP algorithm and Kanazawa’s work.

316 I. Tellier

Another less expected result is the introduction of a new class of automata:
the class of RA, which naturally extends the class of FSA and allows to represent
unidirectional CGs. Unidirectional CGs are better adapted to represent CF-
languages for inference from strings than general CGs, because they are more
constrained but generate the same class of languages. The class Gk,σ is even more
interesting because, for each element of this class, there exists a characteristic set
of flat structural examples with FA internal nodes only. So, learning this class
from strings is not more expansive than learning it from structures. Of course,
the expressivity of this class, which is still not known, should be characterized
more precisely.

This study shows that the inference of CF-grammars may not be so different
from the inference of regular grammars as it first seemed. But a lot remains to
be done. A natural perspective is the adaptation of algorithms learning regular
languages from positive and negative examples (such as RPNI [13], or Delete [7])
to CF-languages. This requires to define a canonical target. Another possible
perspective concerns the adaptation of this work to Lambek grammars.

References

1. D. Angluin. Inference of Reversible Languages Journal of the ACM 3: 741–765,
1982.

2. Y. Bar Hillel and C. Gaifman and E. Shamir. On Categorial and Phrase Structure
Grammars. Bulletin of the Research Council of Israel, 9F, 1960.

3. J. Besombes and J-Y. Marion. newblock Learning Reversible Categorial Grammars
from Structures newblock proceedings of Categorial Grammars 148–163, 2004.

4. W. Buszkowki and G. Penn. Categorial grammars determined from linguistic data
by unification, newblock Studia Logica, p. 431–454, 1990.

5. C. Costa-Florencio. Consistent Identification in the Limit of Any of the Classes
k-valued Is NP-hard. proceedings of LACL, 125-134, LNAI 2099, 2001.

6. C. Costa-Florencio. Consistent Identification in the Limit of Rigid Grammars from
Strings Is NP-hard. proceedings of the IGGI: Algorithms and Applications, 49–62,
LNAI 2484, 2002.

7. F. Denis and A. Lemay and A. Terlutte. Some language classes identifiable in the
limit from positive data. proceedings of the ICGI: Algorithms and Applications,
63-76, LNAI 2484, 2002.

8. P. Dupont and L. Miclet and E. Vidal. What is the search space of the regular
inference. proceedings of ICGI, 25–37, LNCS 862, 1994.

9. E.M. Gold. Language identification in the limit. Information and Control, 10:
447–474, 1967.

10. G. Huet and C. Retore Survey of a few fundamental representation structures for
computational linguistics ESSLI 2002 lecture.

11. A. Joshi and Y. Schabes. Tree-Adjoining Grammars. Handbook of Formal Lan-
guages, 3:69-120. Springer, 1997.

12. M. Kanazawa. Learnable Classes of Categorial Grammars, CSLI Publications.
1998.

13. J. Oncina and P. Garcia. Identifying regular languages in polynomial time, In
Advances in Structural and Syntactic Pattern Recognition, vol.5: 99-108, World
Scientific, 1992.

The Expressive Power of Restricted
Fragments of English

Allan Third

School of Computer Science, University of Manchester, UK
allan.third@cs.man.ac.uk

Abstract. Taking the notion of expressive power of a language to mean
its ability to distinguish different situations, we define four simple frag-
ments of English based on the syntactic constructions they contain, and
characterise their expressive power via translation into first-order logic.
We also describe the circumstances under which an arbitrary first-order
formula can be translated back into an English sentence of each frag-
ment. This work is an extension of the semantic complexity results of
Pratt-Hartmann [2], and Pratt-Hartmann and Third [3].

In this paper, we consider some simple syntactic constructions of English, and
attempt to describe their expressive power. That is to say, we aim to answer
the following question: when can two situations be distinguished by sentences
containing, say, relative clauses, which cannot be distinguished without them?

In order to reduce the problem to manageable proportions, since we cannot
look at English as a whole, we restrict our attention to small fragments – sets
of sentences constructed from a fixed, limited grammar and lexicon, where each
sentence is associated with an expression of first-order logic representing its
truth conditions. Each such fragment of English thus defines a fragment of first-
order logic, whose expressive power can be characterised model-theoretically. By
varying the syntactic constructions used to define fragments, we can isolate the
contributions of those constructions to the range of expressible meanings.

In [2] and [3], the expressive power of a variety of fragments of English was
investigated, with the measure of expressivity being the computational com-
plexity of deciding whether a given set of sentences in each fragment is logically
consistent. In the present paper, we revisit some of these fragments, and pro-
vide alternative, more fine-grained characterisations of expressive power in terms
of relations between the structures interpreting each fragment. Specifically, we
consider Cop, the simplest fragment given in [2] and [3], and examine how its
expressive power varies when extended with transitive verbs and relative clauses.
In doing so, we assume some basic familiarity with the syntax of natural lan-
guage, and the grammar of English, first-order logic and its model theory, and
some ideas from the theory of computational complexity.

We use the following terminology throughout. For each fragment F of English,
let an F -sentence be an element of F , and let an F -formula be the translation of
an F -sentence into first-order logic. Let F also refer ambiguously (but harmlessly

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 317–329, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

318 A. Third

so) to the corresponding fragment of logic. By the expressive power of F , we
mean the ability of sentences of F to distinguish different situations. In model-
theoretic terms, given two structures A and B, when do A and B have the same
F -theory (make precisely the same F -formulae true), and when do they not? This
question can be answered by giving a relation between pairs of structures which
preserves truth of F -formulae – a relation which plays much the same role that
bisimulation plays for modal logic (see, for example, [1]). We would therefore also
like to establish invariance results similar to the van Benthem Characterisation
Theorem for modal logic, which states that a first-order formula φ is equivalent
to a modal formula if and only if the truth of φ is preserved by bisimulation. Such
a result for a fragment F of English would in effect describe the circumstances
under which it is possible to express a first-order formula using sentences of F .

1 The Syllogistic Fragment: Cop

We begin with the fragment named Cop in [3], which to all intents and purposes
is the language of the traditional syllogism. The following set of semantically
annotated phrase structure rules provides a formal definition of Cop.

Content lexicon

N/λx[man(x)] → man
N/λx[mortal(x)] → mortal
. . .

PropN/λp[p(socrates)] → Socrates
PropN/λp[p(diogenes)] → Diogenes
. . .

Syntax

IP/φ(ψ) → NP/φ, I′/ψ
I′/φ → is a N′/φ
I′/¬φ → is not a N′/φ
NP/φ → PropN/φ
NP/φ(ψ) → Det/φ, N′/ψ
N′/φ → N/φ

Formal lexicon

Det/λpλq[∃x(p(x) ∧ q(x))] → some
Det/λpλq[∀x(p(x) → q(x))] → every
Det/λpλq[∀x(p(x) → ¬q(x))] → no

The expressions to the right of the obliques represent the semantics of the
phrases with which they are associated, with φ(ψ) indicating order of compo-
sition. A particular choice of content lexicon corresponds to the selection of a
signature for the corresponding first-order language; the above grammar thus
defines a family of fragments. Where we refer to “the fragment Cop” in the ab-
sence of a contextually salient content lexicon, we mean the union of all such
fragments. (The name “Cop” refers to the common grammatical feature of all
sentences in this fragment: the copula “is”.)

It is straightforward to verify that the above set of rules generates all and
only sentences of the forms

c is (not) a p Some p is (not) a q
Every p is (not) a q No p is (not) a q

and that it generates all and only the formulae

The Expressive Power of Restricted Fragments of English 319

±p(c) ∀x(p(x) → ±q(x)) ∃x(p(x) ∧ ±q(x))

corresponding to the expected semantics of each sentence.
We take such semantic assignments to be uncontroversial. The occurrence

of precisely the above translations as exercises in countless introductory logic
courses provides sufficient evidence for their adequacy.

The following result was proved in [2]:

Theorem 1. The satisfiability of a set E of sentences of Cop can be decided in
deterministic polynomial time, where the complexity measure is the number of
symbols in E.

Thus, deciding which sets of Cop-sentences represent logically possible sit-
uations – equivalently, which syllogistic arguments are valid – is a tractable
problem. This result, however, provides little insight into what can or cannot be
expressed in Cop. We now offer an alternative characterisation of the expressive
power of this fragment.

Suppose we are dealing with some fixed content lexicon, corresponding to
a signature S = (C,P) of constants C and unary predicates P . Let A be a
structure interpreting S, and let tpA[a1, . . . , an] be the n-type of a1, . . . , an in A
for all a1, . . . , an ∈ A.

Definition 1. Let the Cop-configuration of A over S be the function
copA : P × P → {1, 2, 3, 4, 5} defined as follows for p, q ∈ P .

copA(p, q) = 1 if pA = qA

2 if pA � qA

3 if qA � pA

4 if pA ∩ qA �= ∅, qA \ pA �= ∅ and pA \ qA �= ∅
5 otherwise

If A and B are structures interpreting S, we say that A and B are Cop-
similar, written A ∼Cop B, if the following conditions hold

1. copA = copB,
2. for every constant c ∈ C, tpA[cA] = tpB[cB].

Theorem 2. Let A and B be structures interpreting S. Then A ∼Cop B if and
only if A and B have the same Cop theory over S.

Proof. Suppose that A ∼Cop B. By (2), A and B agree on all ground Cop-
formulae. Let φ be a non-ground Cop-formula. By considering each possibility
for φ in turn, the fact that copA = copB guarantees that A and B agree on
the truth of φ, and thus A and B have the same Cop theory. The details are
straightforward.

Conversely, suppose either that for some pair of unary predicates p, q ∈ P ,
we have copA(p, q) �= copB(p, q), or that for some constant c, tpA[cA] �= tpB[cB].

In the latter case, there exists some p ∈ P such that A |= p[cA] and B �|= p[cB],
or vice versa, in which case the Cop-formula p(c) is true in one of A and B, and
false in the other.

320 A. Third

For the former case, we show that for each possible pair of values of copA(p, q)
and copB(p, q), we can construct a Cop-formula true in A and false in B. The
proof is routine; for brevity, we describe only a single case here.

copA(p, q) = 1, copB(p, q) = 2: We have that pA = qA, pB ⊆ qB, and
qB \ pB �= ∅, and so the Cop-formula ∀x(q(x) → p(x)) is true in A and
not B. ()

Thus the fragment Cop is capable of distinguishing between two structures
if and only if they are Cop-dissimilar. As Cop-similarity is an easy condition to
check, we can use it to prove inexpressibility results, such as the following.

Corollary 1. Let P , Q, R be sets. No Cop-formula (or set of Cop-formulae) is
equivalent to P ∩R = Q ∩R.

Proof. Define two structures A and B over the domain {a1, . . . , a5}, interpreting
only p, q and r as follows

pA = pB = {a1, a2} rA = {a2, a5}
qA = qB = {a2, a3, a4} rB = {a2, a3, a5}

and consider the Cop-fragment generated by a content lexicon containing com-
mon nouns corresponding to each of p, q and r. Neither A nor B interpret any
constants, and it is easy to check that copA and copB have the same value for ev-
ery combination of pairs from {p, q, r}, and so A ∼Cop B. But pA∩rA = qA∩rA,
and pB ∩ rB �= qB ∩ rB. By Theorem 2, A and B make the same Cop-formulae
true, and the result follows. ()

Theorem 2 thus answers, for Cop, the first of the questions we posed earlier:
under what circumstances do two structures make the same sentences true?
Does this result allow us then to achieve the second of our goals, and prove
an Invariance Theorem for Cop similar to the van Benthem Characterisation
Theorem for modal logic? That is, is it true that an arbitrary formula φ is
equivalent to a Cop-formula if and only if φ is invariant for Cop-simulation? (By
“invariant for Cop-simulation”, we mean that any pair of Cop-similar structures
assign the same truth value to φ.)

Unfortunately, as the following example shows, the answer is no.

Example 1. Let c be a constant and p, q unary predicates. The formula p(c)∨q(c)
is easily shown to be invariant for Cop-simulation, and yet is not equivalent to
any Cop-formula. To see this second claim, observe that every Cop-formula is
Horn, and so has a “least true” Herbrand model; p(c)∨ q(c) is non-Horn, and it
is straightforward to construct two equally-minimal Herbrand models of it.

In fact, this example reveals a more general difficulty: it turns out that there
is no possible refinement of Cop-simulation which will allow us to prove the
desired kind of result. For, suppose there is some relation ∼ on structures such
that a formula φ is invariant for ∼ if and only if φ is equivalent to a Cop-formula.

The Expressive Power of Restricted Fragments of English 321

Then, taking c to be a constant, and p, q to be unary predicates as above, if A,B
are any pair of structures such that A ∼ B, it must certainly be the case that
A |= p[cA] iff B |= p[cB] and that A |= q[cA] iff B |= q[cB]. But then it follows
that A |= p[cA] ∨ q[cA] iff B |= p[cB] ∨ q[cB]. Hence p(c) ∨ q(c) is ∼-invariant –
a contradiction, and so no such relation can exist.

A somewhat weaker result is possible, however. Let Cop∗ be the fragment
of English (and hence of logic) obtained by adding the following rules to the
grammar of Cop:

IP/φ ∧ ψ → IP/φ, and, IP/ψ
IP/φ ∨ ψ → IP/φ, or, IP/ψ

That is to say, Cop∗ is the result of closing Cop under Boolean combinations of
sentences. (Sentence negation was already present in Cop.)

Theorem 3. A first-order formula φ is equivalent to a formula in Cop∗ if and
only if φ is invariant for Cop-simulation.

Proof. (Essentially the same as the proof of the van Benthem Characterisation
Theorem – see, e.g., [1],[4].) Theorem 2 guarantees that any formula equiva-
lent to a Cop-formula is invariant for ∼Cop, and so any formula equivalent to
a Boolean combination of Cop-formulae (i.e., any Cop∗-formula) must also be
invariant for ∼Cop.

To show the converse, suppose that φ is invariant for Cop-simulation, and
let Φ = {ψ |ψ a Cop∗-formula, φ |= ψ}. If we can show that Φ |= φ, then by
compactness, there exists some finite subset X ⊆ Φ such that |=

∧
X → φ. By

construction of Φ, |= φ →
∧
X, and so |= φ ↔

∧
X – that is, φ is equivalent to

a conjunction of Cop∗-formulae, which must itself be a Cop∗-formula.
Now, to show that Φ |= φ, suppose that Φ is consistent (otherwise we have

trivially that Φ |= φ), and let A be a model of Φ. Let T = {ψ |ψ a Cop∗-formula
and A |= ψ}. We show that T ∪{φ} is consistent. For, suppose it was not. Then,
by compactness, for some finite subset X ⊆ T , |= φ → ¬

∧
X. Now, by moving

negations inward, we can see that ¬
∧
X is logically equivalent to a Cop∗-formula

χ (since Cop∗ is closed under Boolean operators) which is a member of Φ. But
then A |= ¬

∧
X, contradicting X ⊆ T , and A |= T . So T ∪ {φ} is consistent.

Let B be any model of T ∪ {φ}, and let ψ be any Cop∗-formula. If A |= ψ,
then ψ ∈ T , and so B |= ψ. Likewise, if A |= ¬ψ, then ¬ψ is logically equivalent
to an element of T , and so B |= ¬ψ. Thus A and B have the same Cop∗ theory,
and so the same Cop theory, and, by Theorem 2, A ∼Cop B. Since B |= φ and φ
is invariant for Cop-simulation, A |= φ, and so Φ |= φ as required. ()

Note that the extra rules added for Cop∗ are far from logically harmless:
in particular, it is easy to show that Cop∗ has an NP-complete satisfiability
problem, compared to the PTIME result for Cop. However, as we saw, without
this extra complexity, a result such as Theorem 3 is not possible.

322 A. Third

2 Transitive Verbs

We now proceed to extend Cop, beginning by adding new phrase-structure rules
in order to allow sentences containing transitive verbs, such as admire.

Syntax Formal Lexicon

I′/φ → VP/φ Neg → does not

I′/φ → NegP/φ
NegP/¬φ → Neg, VP/φ Content Lexicon
VP/φ(ψ) → TV/φ, NP/ψ

TV/λsλx[s(λy[admire(x, y)])] → admires
TV/λsλx[s(λy[despise(x, y)])] → despises
. . .

In order to keep the grammar simple, we have ignored surface syntactic issues
of verb-inflection and the replacement of some with any in negative contexts,
neither of which affect the semantics.

Let Cop+TV be the fragment of English generated by the union of the above
rules with those of Cop. Via the same process of semantic annotation as before,
Cop+TV also defines a fragment of first-order logic over the signature generated
by the content lexicon. Thus a sentence such as Every man admires some philosopher

is assigned the semantics

∀x(man(x) → ∃y(philosopher(y) ∧ admire(x, y)).

Cop+TV is more expressive than Cop. To see this, let A′, B′ be the structures
A and B, respectively, from the proof of Corollary 1, extended to interpret a
relation t by tA

′
= ∅ and tB

′
= {(a1, a2)}. It is trivial to show that A′ and B′ have

the same Cop theory, but the Cop+TV-formula ∀x(p(x) → ∀y(p(y) → ¬t(x, y)))
is true in A′ and false in B′. Despite this increase in expressive power, the
following result was shown in [3].

Theorem 4. The satisfiability of a set E of sentences of Cop+TV can be decided
in deterministic polynomial time.

The fact that expressivity can be increased without a corresponding increase in
semantic complexity demonstrates that complexity is too coarse a measure of
expressive power. As in the case of Cop, we define a relation between structures
preserving truth of Cop+TV-formulae.

Definition 2. Let S = (C,P,R) be a signature consisting of constants C, unary
predicates P and binary relations R, and let A be a structure interpreting S.
Let the TV-configuration of A over S be the function tvA : P × P × R →
{1, 2, 3, 4, 5, 6} defined as follows for p, q ∈ P , r ∈ R.

The Expressive Power of Restricted Fragments of English 323

tvA(p, q, r) =
1 if (pA × qA) ∩ rA = ∅
2 if pA × qA ⊆ rA and pA × qA �= ∅
3 if pA �= ∅ and for every a1 ∈ pA, there exist

a2, a3 ∈ qA such that (a1, a2) ∈ rA, (a1, a3) �∈ rA

4 if qA �= ∅, there exists a1 ∈ pA such that
({a1} × qA) ∩ rA = ∅ and there exists a2 ∈ pA

such that {a2} × qA ⊆ rA

5 if (pA × qA) ∩ rA �= ∅, there exists a1 ∈ pA such
that ({a1} × qA) ∩ rA = ∅ and for every a2 ∈ pA,
there exists a3 ∈ qA such that (a2, a3) �∈ rA

6 otherwise
If A and B are structures interpreting S, we say that A and B are TV-

similar, written A ∼TV B, if

1. tvA = tvB,
2. for every pair of constants c, d, tpA[cA, dA] =tpB[cB, dB],
3. for every c ∈ C, p ∈ P and r ∈ R:

(a) there exists a ∈ A such that A |= p[a]∧r[a, cA] iff there exists b ∈ B such
that B |= p[b] ∧ r[b, cB],

(b) there exists a ∈ A such that A |= p[a]∧r[cA, a] iff there exists b ∈ B such
that B |= p[b] ∧ r[cB, b], and

4. A ∼Cop B.

Theorem 5. Let A and B be structures interpreting S = (C,P,R). Then
A ∼TV B if and only if A and B have the same Cop+TV theory over S.

Proof. Essentially the same as that for Theorem 2. ()

Since the Cop-formulae in Example 1 are also Cop+TV-formulae, and every
Cop+TV-formula is Horn, the same difficulty arises as before, and so in order
to prove any kind of Invariance Theorem, we are forced to add sentence (IP)
coordination via the same phrase-structure rules as earlier, to produce a fragment
Cop+TV∗ closed under Boolean combinations of sentences. The following result
then follows by a near identical argument to that for Theorem 3.

Theorem 6. A first-order formula φ is equivalent to a Cop+TV∗-formula if
and only if φ is invariant for TV-simulation.

As before, the addition of sentence coordination leads to an increase in complex-
ity: Cop+TV∗ has an NP-complete satisfiability problem.

3 Relative Clauses

Let us now consider what happens when we extend the fragment Cop in a dif-
ferent way, by adding restrictive relative clauses. We show again that, as might
be expected, such an extension leads to an increase in expressive power.

324 A. Third

The following rules, when added to those of Cop, generate sentences contain-
ing relative clauses:

Syntax

N′/φ(ψ) → N/ψ, CP/φ
CP/φ(ψ) → CSpect/φ, C′

t/ψ
C′

t/λt[φ] → C, IP/φ
NP/φ → RelPro/φ
CSpect →

Formal lexicon

C →
RelPro/λqλpλx[p(x) ∧ q(x)] → who,

which

To ensure correct English word-order, wh-movement must be applied to sen-
tences (IPs) generated by these rules, so that: (i) every RelPro moves into the
nearest CSpect which c-commands it; (ii) every CSpect is filled by a moved Rel-
Pro; and (iii) every NP position vacated by a RelPro moving to CSpect is filled
by a trace t with semantic value λp.p(t). (In fact, a simple fragment such as this
one could be specified just as precisely without any reference to wh-movement.
For the sake of extensibility, however, we prefer the more general approach.)

In what follows, we assume that all nouns are animate, and use only who, not
which; the issue of agreement between relative pronouns and their antecedents
does not affect the semantics.

Let Cop+Rel be the fragment of English (and hence also the fragment of
first-order logic) generated by the combination of the above rules, the rules of
Cop and the process of wh-movement. An example of a sentence in Cop+Rel
is Every man who is a stoic is a philosopher who is not a cynic, which is assigned the
semantics

∀x(man(x) ∧ stoic(x) → philosopher(x) ∧ ¬cynic(x)).

The following complexity result was shown in [2]:

Theorem 7. The satisfiability problem for a set E of sentences of Cop+Rel is
NP-complete.

This increase in computational complexity is accompanied by a genuine in-
crease over the expressive power of Cop: using the content lexicon from the proof
of Corollary 1, it is clear that P ∩R = Q ∩R is expressible in Cop+Rel by the
pair of sentences Every p who is an r is a q and Every q who is an r is a p. Note
also that the expressive powers of Cop+Rel and Cop+TV are different: it is
straightforward to build pairs of structures which Cop+Rel can distinguish and
Cop+TV cannot, and vice versa.

As before, we now define a relation on structures corresponding to preser-
vation of truth in Cop+Rel. Suppose again that S = (C,P) is a signature of
constants C and unary predicates P . In order to simplify matters slightly, we
assume that P contains a special predicate thing, interpreted in every structure
A so that thingA = A.

Definition 3. Let A and B be structures interpreting S. We say that A and B
are Cop+Rel-similar, written A ∼Rel B, if

The Expressive Power of Restricted Fragments of English 325

1. for every constant c, tpA[cA] =tpB[cB],
2. for every a ∈ A, there exists b ∈ B such that tpA[a] =tpB[b],
3. for every b ∈ B, there exists a ∈ A such that tpA[a] =tpB[b].

Theorem 8. Let A and B be structures interpreting S, as above. Then A ∼Rel B
if and only if A and B have the same Cop+Rel theory over S.

Proof. Suppose that A ∼Rel B. We show that for every Cop+Rel-formula φ, if
A |= φ, then B |= φ. Since Cop+Rel contains sentence negation, it follows that
if B |= φ, A |= φ.

The truth of Cop+Rel sentences containing proper nouns is evidently pre-
served by clause (1) in Definition 3. Each N′-phrase occurring in a Cop+Rel
sentence not containing a proper noun contributes a subformula of the form
p(x), or p(x)∧Π(x) to the semantics of each sentence in which it occurs, where
p is some unary predicate, and Π(x) is a (possibly empty) Boolean combination
of atoms q(x). Call any such formula an N′-formula. Every such Cop+Rel sen-
tence therefore translates to a formula of one of the forms ∀x(ψ1(x) → ±ψ2(x))
or ∃x(ψ1(x) ∧±ψ2(x)), where ψ1(x) and ψ2(x) are N′-formulae. Since A and B
realise the same 1-types, it is straightforward to show that A and B agree on
the truth value of every Cop+Rel-formula.

Conversely, suppose now that A �∼Rel B. Then one of (1), (2) or (3) in Defi-
nition 3 fails. We consider each case in turn.

1. For some constant c, tpA[cA] �=tpB[cB]. As in the proof of Theorem 2, there
exists a ground Cop-formula (and hence Cop+Rel formula) φ such that
A |= φ and B �|= φ.

2. There exists a ∈ A such that for every b ∈ B, tpA[a] �=tpB[b]. Then for every
b ∈ B, there exists a unary predicate pb such that A |= pb[a] iff B |= ¬pb[b].
Let P+

a = {p+ ∈ P |A |= p+[a]}, and let P−
a = P \ P+

a . We know that
P+

a �= ∅, since thing ∈ P+
a , and so the sentence

Some thing {who is a p+}
p+∈P+

a
{who is not a p−}

p−∈P−
a

is a thing

is true in A but not in B.
3. Similar to the previous case.

Thus if A �∼Rel B, there exist Cop+Rel-formulae true in A and false in B,
and so the theorem holds. ()

Let Cop+Rel∗ be the fragment generated by the grammar of Cop+Rel (in-
cluding wh-movement), augmented with sentence coordination in the usual way.
Since Cop+Rel-formulae are not in general Horn, the argument of Example 1
does not apply. However, as yet we do not have an invariance result for Cop+Rel
without sentence coordination.

It is straightforward to verify that Cop+Rel∗-sentences containing embedded
IP coordination, such as Every man who is a stoic or is a cynic is a philosopher, can
always be simulated by coordination of complete Cop+Rel-sentences, and thus

326 A. Third

Cop+Rel∗ is (semantically) just the result of closing Cop+Rel under Boolean
combinations of sentences.

We again obtain an Invariance Theorem by essentially the same argument as
for Theorems 3 and 6.

Theorem 9. A first-order formula φ is equivalent to a Cop+Rel∗-formula if
and only if it is invariant for Cop+Rel-simulation.

Note that, unlike in the earlier cases, the formation of Cop+Rel∗ from
Cop+Rel does not affect the computational complexity: the satisfiability problem
for Cop+Rel∗ is also NP-complete. In general, the complexity of any fragment
with an NP-hard satisfiability problem will be unaffected by the addition of
sentence coordination.

4 Transitive Verbs and Relative Clauses

Finally, let us consider what happens when we take the union of all three of
the preceding fragments. Let Cop+Rel+TV be the fragment of English (and,
as usual, of logic) generated by the union of the phrase structure rules for Cop,
Cop+Rel and Cop+TV, along with the rule of wh-movement. In addition, for
this final fragment, we assume from the beginning that we also allow sentence
(IP) coordination – the analogues of the following results are not yet known in
its absence.

Clearly, every pair of situations which can be distinguished by any of the frag-
ments we have considered so far can also be distinguished by Cop+Rel+TV, and
thus Cop+Rel+TV is strictly more expressive than all of the earlier fragments.

Cop+Rel+TV contains sentences such as Every man who admires a cynic is a

philosopher, which is given the translation

∀x(man(x) ∧ ∃y(cynic(y) ∧ admire(x, y)) → philosopher(x)).

As presented here, Cop+Rel+TV also allows ungrammatical N′-phrases such as
*man who [IP[IPadmires a stoic] and [IP a cynic despises]]. However, it is easy to see
that any such N′ can be replaced with a grammatical equivalent, such as man

who admires a stoic and whom a cynic despises. To shorten the presentation, we omit
the (routine) details here.

Note that, due to the addition of sentence coordination, this fragment is a
slight extension of the fragment named Cop+Rel+TV in [3]. Nonetheless the
following result holds.

Theorem 10. The satisfiability problem for a setE of sentences of Cop+Rel+TV
is EXPTIME-complete.

We characterise the expressive power of Cop+Rel+TV in the by-now familiar
manner.

The Expressive Power of Restricted Fragments of English 327

Definition 4. Let A and B be structures interpreting a signature S = (C,P,R)
consisting of constants C, unary predicates P and binary relations R. A Rel+TV-
simulation C ⊆ A×B is a relation satisfying the following conditions:

1. for every constant c, cACcB.
2. for all a ∈ A, b ∈ B such that aCb, tpA[a] = tpB[b],
3. for all a ∈ A, b ∈ B such that aCb, and every constant c,

tpA[a, cA] = tpB[b, cB],
4. for all a ∈ A, b ∈ B such that aCb, and every r ∈ R,

(a) if, for some a′ ∈ A, A |= ±r[a, a′] , then for some b′ ∈ B such that a′Cb′,
B |= ±r[b, b′],

(b) if, for some a′ ∈ A, A |= ±r[a′, a], then for some b′ ∈ B such that a′Cb′,
B |= ±r[b′, b],

(c) if, for some b′ ∈ B, B |= ±r[b, b′], then for some a′ ∈ A such that a′Cb′,
A |= ±r[a, a′],

(d) if, for some b′ ∈ B, B |= ±r[b′, b], then for some a′ ∈ A such that a′Cb′,
A |= ±r[a′, a],

5. for all a ∈ A, there exists b ∈ B such that aCb,
6. for all b ∈ B, there exists a ∈ A such that aCb,

Structures A and B are Rel+TV-similar, written A ∼Rel+TV B, if some
C ⊆ A×B is a Rel+TV-simulation.

Lemma 1. If A ∼Rel+TV B, then A and B agree on the truth values of all
Cop+Rel+TV-formulae.

Proof. Let C ⊆ A×B be a Rel+TV simulation.
By (1) and (3), A and B agree on all ground Cop+Rel+TV-formulae.
As in the proof of Theorem 8, let an N′-formula be the subformula contributed

by an N′-phrase to the semantics of a complete sentence. A simple structural
induction shows that for all N′-formulae φ(x), if a ∈ A, b ∈ B such that aCb,
then A |= φ[a] iff B |= φ[b].

Now let φ be any non-ground Cop+Rel+TV-formula, and suppose that
A |= φ. In each case, B |= φ. We give only one example here, for brevity –
the rest are similar. Let ψ1(x) and ψ2(x) be N′-formulae.

φ = ∀x(ψ1(x) → ψ2(x)) : For all a ∈ A, if A |= ψ1[a], it follows that A |= ψ2[a].
Suppose for some b ∈ B, B |= ψ1[b]∧¬ψ2[b]. By (6), there exists a ∈ A such
that aCb and, by the above induction, A |= ψ1[a]∧¬ψ2[a] – a contradiction.
So B |= φ. ()

Lemma 2. Let A and B be 2-saturated structures with the same Cop+Rel+TV
theory. Then A ∼Rel+TV B.

Proof. Define C ⊆ A×B as follows:

C = {(a, b) | a ∈ A, b ∈ B, and for all N′-formulae φ(x),
A |= φ[a] iff B |= φ[b]}

328 A. Third

We check that C is a Rel+TV-simulation.

1. Immediate, since A and B have the same Cop+Rel+TV theory.
2. Using the special predicate thing if necessary, any 1-type can be specified

fully by an N′-formula in the fragment Cop+Rel. Thus for all a ∈ A, b ∈ B,
if aCb, then tpA[a] =tpB[b].

3. Let a ∈ A, and let c be a constant symbol. For every binary predicate r such
that A |= ±r[a, cA], thing(x) ∧ ±r(x, c) is an N′-formula satisfied by a in A,
and hence for all b ∈ B such that aCb, we have that B |= thing[b]∧±r[b, cB].
A similar argument applies in the case A |= ±r[cA, a]. It then follows by (1)
and (2) that tpA[a, cA] = tpB[b, cB].

4. (We only consider the first case.) Suppose that for some a ∈ A, there exists
a binary r such that A |= ±r[a, a′] for some a′ ∈ A. We show that for every
b ∈ B such that aCb, there exists b′ ∈ B such that B |= ±r[b, b′] and a′Cb′.
Let Φ be the set of N′-formulae satisfied by a′. For every finite sequence
φ1(x), . . . ,φn(x) of elements of Φ, a satisfies ψ(x) = ∃y(φ1(y)∧ . . .∧φn(y)∧
±r(x, y)) in A. As ψ(x) is an N′-formula, we have that for all b ∈ B such
that aCb, B |= ψ[b]. By 2-saturation of B, there exists b′ ∈ B such that
B |=

∧
φ(y)∈Φ φ[b′] ∧ ±r[b, b′]. That is, since Φ is closed under negation, b′

satisfies precisely the N′-formulae satisfied by a′, and hence a′Cb′.
5. Let a ∈ A, and let Φ be the set of N′-formulae satisfied by a in A. Then for

every finite sequence of elements φ1(x), . . . ,φn(x) of Φ, A |= φ1[a]∧. . .∧φn[a],
and hence A |= ∃x(φ1(x) ∧ . . . ∧ φn(x)) – a Cop+Rel+TV-formula, which
must therefore be true in B also. So for each finite sequence of elements
φ1(x), . . . ,φn(x) of Φ, there exists b ∈ B such that B |= φ1[b] ∧ . . . ∧ φn[b],
and so by 2-saturation of B, there exists b ∈ B such that B |=

∧
φ(x)∈Φ φ[b].

Since Φ is closed under negation, it follows that aCb.
6. Similar to (5).

Thus C is a Rel+TV-simulation, and so A ∼Rel+TV B. ()
In light of Lemmas 1 and 2, we can now prove

Theorem 11. A first-order formula φ is equivalent to a formula in Cop+Rel+TV
if and only if φ is invariant for Rel+TV-simulation.

Proof. Essentially the same as the proof of Theorem 3, save that, having built
structures A and B with the same Cop+Rel+TV theory, we cannot immediately
conclude that A ∼Rel+TV B. However, as every structure has a 2-saturated ele-
mentary extension (see, e.g., [4]), we are able to construct elementary extensions
A∗ and B∗ of A and B respectively such that A∗ ∼Rel B∗, whence the rest of
the proof proceeds as earlier. ()

5 Conclusion

The results presented here extend the complexity results of [2] and [3] by provid-
ing semantic characterisations of the expressive power of four simple fragments

The Expressive Power of Restricted Fragments of English 329

of English – the syllogistic fragment Cop, and extensions of Cop with transitive
verbs and relative clauses. For each fragment, we defined a notion of simulation
between pairs of structures such that structures are similar if and only if they
are indistinguishable by that fragment. Using these simulations, we were also
able to show when arbitrary first-order formulae can be translated back into
(extensions of) each fragment.

The techniques used to obtain these results are fully general, and can be
applied to arbitrary further extensions of Cop, or other fragments of English
(or, of course, naturally-delineated fragments of any natural language.) We are
currently working on filling in the missing results mentioned above – for ex-
ample, Cop+Rel+TV without sentence coordination – as well as characterising
the expressive power of extensions of Cop with anaphora, ditransitive verbs and
various forms of sub-sentence coordination. In doing so, we aim to map out the
contributions made by these syntactic constructions to the range of express-
ible meanings, and thus at least partially describe the relationship between the
syntax and semantics of English.

References

1. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 2001.

2. Ian Pratt-Hartmann. Fragments of language. Journal of Logic, Language and In-
formation, 13:207–223, 2004.

3. Ian Pratt-Hartmann and Allan Third. More fragments of language. Notre-Dame
Journal of Formal Logic, 2004. submitted.

4. Johan van Benthem. Exploring logical dynamics. CSLI Publications, Stanford, 1996.

The Complexity and Generative Capacity of
Lexicalized Abstract Categorial Grammars

Ryo Yoshinaka1,2 and Makoto Kanazawa1

1 National Institute of Informatics,
2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo 101–8430, Japan

2 Graduate School of Interdisciplinary Information Studies, University of Tokyo,
7–3–1 Hongo, Bunkyo-ku, Tokyo 113–0033, Japan

ry@nii.ac.jp

Abstract. Previous studies have shown that some well-known classes
of grammars can be simulated by Abstract Categorial Grammars (de
Groote 2001) in straightforward ways. These classes of grammars all
generate subclasses of the PTIME languages. While the exact generative
capacity of the class of ACGs and the complexity of its universal mem-
bership problem are both unknown, we show that the universal member-
ship problem for the class of lexicalized ACGs is NP-complete and the
languages generated by lexicalized ACGs form a subclass of NP which
includes some NP-complete languages.

1 Introduction

De Groote [1] has introduced Abstract Categorial Grammars (ACGs), in which
both basic building blocks of the grammar as well as grammatical combinations
of them are represented by linear typed λ-terms.1 The ACG has a number of
attractive features as a grammar formalism for natural language. The expressive
power of the typed λ-calculus allows straightforward encoding of diverse types of
data, including strings, trees, and semantic representations, as well as operations
on those data, within a single framework, while the linearity constraint captures
resource sensitivity of natural language.

In this paper, we focus on the power of the ACG formalism as a device
for generating string languages. Previous studies have shown that several well-
established grammar formalisms can be simulated by ACGs in straightforward
ways. Thus, the string languages generated by context-free grammars [1, 5],
tree-adjoining grammars [2], linear context-free tree grammars [5], and m-linear
context-free rewriting systems [4, 5] can all be generated by ACGs. These lan-
guages all belong to the class of PTIME languages.

The exact generative capacity of the class of ACGs and the complexity of its
universal membership problem are both unknown, although it is easy to see that

1 An almost identical formalism has been proposed independently by Muskens [10],
who calls it Lambda Grammar.

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 330–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Complexity and Generative Capacity of Lexicalized ACGs 331

the universal membership problem is EXPSPACE-hard. In this paper, we inves-
tigate the complexity and generative capacity of the class of lexicalized ACGs
(LACGs), which, like categorial grammars and lexicalized tree-adjoining gram-
mars, express all grammar-specific information as properties of lexical items.
We show in Section 3 that the languages generated by LACGs form a subclass
of NP which includes some NP-complete languages as well as languages that
are not semilinear. This suggests that, while lexicalization severely restricts the
power of ACGs in general, it is not overly restrictive for the purpose of modeling
natural language grammars. In Section 4, we turn our attention to the class of
second-order ACGs, a small subclass of the ACGs generating only semilinear
languages. The lexicalized second-order ACGs happen to be equivalent to de
Saussure grammars [8] with the restriction of linearity added. We show that
every second-order ACG has an equivalent lexicalized second-order ACG (if the
empty string is disregarded).

2 Abstract Categorial Grammars

2.1 Preliminaries

Definition 1. Let A be a finite non-empty set of atomic types. The set T (A)
of types built on A is defined as follows:

– An atomic type p ∈ A is a type in T (A).
– If γ, δ ∈ T (A), then γ � δ ∈ T (A).

The order Od of a type is defined as follows:

– The order Od(p) of an atomic type p ∈ A is 1.
– The order of γ � δ is defined by Od(γ � δ) = max{Od(γ) + 1,Od(δ)}.

A higher-order signature Σ is a triple 〈A ,C , τ〉 where A is a finite non-
empty set of atomic types, C is a finite set of constants, and τ is a function from
C to T (A).

Let X be a countably infinite set of variables. The set Λ(Σ) of linear λ-terms
built upon Σ, the set Fv(M) of free variables in M ∈ Λ(Σ), and the type τ̂(M)
of M are defined inductively as follows:

– A constant c ∈ C is a linear λ-term of type τ̂(c) = τ(c) and Fv(c) = ∅.
– For a variable x ∈ X and a type γ ∈ T (A), xγ is a linear λ-term of type

τ̂(xγ) = γ and Fv(xγ) = {xγ}.
– For two linear λ-terms M and N , if τ̂(M) = γ � δ, τ̂(N) = γ and Fv(M)∩

Fv(N) = ∅, then MN is a linear λ-term of type τ̂(MN) = δ and Fv(MN) =
Fv(M) ∪ Fv(N).

– For a variable x ∈ X and a linear λ-term M , if xγ ∈ Fv(M), then λxγ .M
is a linear λ-term of type τ̂(λxγ .M) = γ � τ̂(M) and Fv(λxγ .M) =
Fv(M) − {xγ}.

332 R. Yoshinaka and M. Kanazawa

We will simply say λ-term instead of linear λ-term, since this paper does not
treat any non-linear λ-terms. A λ-term M is closed iff Fv(M) = ∅. A λ-term M
is a combinator iff M is closed and M contains no constants. As usual, let →β ,
�β , =β , =βη denote one-step β-reduction, multi-step β-reduction, β-equality,
and βη-equality, respectively.

For convenience, we simply write τ instead of τ̂ , often omit the superscript on a
variable (in particular on a bound variable) if its type is clear from the context,
and adopt the following notations:

M1 . . .Mn−1Mn = (M1 . . .Mn−1)Mn

λx1x2 . . . xn.M = λx1.(λx2 . . . xn.M)
γ1 � γ2 � · · · � γn = γ1 � (γ2 � · · · � γn)

γn � δ =

{
δ if n = 0
γ � (γn−1 � δ) if n ≥ 1

We use upper case italic letters M,N, . . . for λ-terms, lower case italic letters
x, y, z, . . . for variables, sanserif a,A, . . . for constants.

Definition 2 (de Groote [1]). An Abstract Categorial Grammar (ACG) G is
a quadruple 〈Σ0,Σ1,L , s〉, where

– Σ0 = 〈A0,C0, τ0〉 is a higher-order signature, called the abstract vocabulary,
– Σ1 = 〈A1,C1, τ1〉 is a higher-order signature, called the object vocabulary,
– L is a “compatible” homomorphism from Λ(Σ0) to Λ(Σ1), called the lexicon,
– s ∈ A0 is called the distinguished type.

More precisely, a lexicon L is a pair of finite functions φ : A0 → T (A1) and
ψ : C0 → Λ(Σ1) such that ψ(c) is closed and τ1(ψ(c)) = φ̂(τ0(c)) for the unique
homomorphic extension φ̂ of φ for all c ∈ C0. In this case, it is easy to see that
τ1(ψ̂(M)) = φ̂(τ0(M)) for all M ∈ Λ(Σ0) for the unique homomorphic extension
ψ̂ of ψ such that ψ̂(xγ) = xφ̂(γ) for all x ∈ X and γ ∈ T (A0). We will simply
write L instead of φ̂ or ψ̂, if no confusion occurs.

We sometimes use the modifier abstract or object to specify the vocabulary
that a given type or term belongs to. Thus, we speak of abstract atomic types,
object atomic types, abstract constants, object constants, etc.

An ACG G = 〈Σ0,Σ1,L , s〉 generates two languages, the abstract language
A(G) and the object language O(G), defined as follows:

A(G) = {M ∈ Λ(Σ0) |M is a closed β-normal λ-term and τ0(M) = s.}
O(G) = {P ∈ Λ(Σ1) |P is the β-normal form of L (M) for some M ∈ A(G).}

The abstract language can be thought as a set of abstract grammatical struc-
tures, and the object language is regarded as the set of concrete forms obtained
from these abstract structures and the lexicon. So, the term Abstract Categorial
Languages (ACLs) means the object languages of ACGs.

The Complexity and Generative Capacity of Lexicalized ACGs 333

Now, suppose that an alphabet C is given. To represent strings on C by
λ-terms, we define a higher-order signature Σ = 〈A ,C , τ〉 as A = {o}, τ(w) =
str = o � o for all w ∈ C . So, we can represent a string w1 . . .wn on C by a λ-
term λzo.(w1(w2(. . . (wnz) . . .)), and the empty string ε by λzo.z. Then, the con-
catenation of two strings is represented by the combinator + = λystr1 ystr2 zo.y1(y2z).
Using the infix notation for +, we see that L + (M + N) =β (L + M) +
N =β λz.L(M(Nz)) for any λ-terms L, M and N of type str . For conve-
nience, we simply write M1 + · · · + Mn for the β-normal form of the λ-term
(. . . (M1 +M2) + · · · +Mn), omitting parentheses. That is, a string w1 . . .wn is
represented by w1 + · · · + wn. We say that M1 + · · · +Mn is the concatenation
of M1, . . . ,Mn. We say that wm + · · · + wm+k is a substring of w1 + · · · + wn if
1 ≤ m ≤ m+ k ≤ n, though the former is strictly speaking not a subterm of the
latter.

Lemma 1. If M(w1 + · · · + wn) �β x1 + · · · + xm for a λ-term M , then w1 +
· · · + wn is a substring of x1 + · · · + xm.

Lemma 2. Suppose that a type γ is constructed from the type str only. Then,
there exist a combinator Zγ of type γ and a λ-term Zγ

c of type γ which contains
exactly one occurrence of the constant c of type str .

Proof. By induction on γ = γ1 � · · · � γm � str , we define combinators Zγ of
type γ and Y γ�str of type γ � str . Let Zγ = λzγ1

1 . . . zγm
m .(Y γ1�strzγ1

1) + · · · +
(Y γm�strzγm

m) and Y γ�str = λzγ .zZγ1 . . . Zγm .
Let Zγ

c = λzγ1
1 . . . zγm

m .c + (Zγz1 . . . zm) for γ = γ1 � · · · � γm � str . ()

2.2 Mathematical Properties of Abstract Categorial Grammars

There are many results on the mathematical properties of ACGs which are them-
selves, or are corollaries to, already known facts. These properties demonstrate
the rich expressive power of ACGs.

Theorem 1 (de Groote and Pogodalla [4]). For every language L defined
by an m-linear context-free rewriting system, there is an ACG G such that O(G)
coincides with L.

Definition 3. The universal membership problem is the problem of determin-
ing whether T ∈ O(G). The emptiness problem for ACGs is the problem of
determining whether O(G) = ∅.

Proposition 1. The universal membership problem for ACGs is at least as hard
as the emptiness problem for ACGs.

Proof. From an arbitrary ACG G = 〈Σ0,Σ1,L , s〉 with Σ0 = 〈A0,C0, τ0〉, define
G ′ = 〈Σ0,Σ

′
1,L

′, s〉 where Σ′
1 = 〈{o},∅,∅〉 and L ′(p) = str for every atomic

type p ∈ A0 and L ′(c) = ZL ′(τ0(c)) for every constant c ∈ C0, where Zγ is as
in Lemma 2. Then, L ′(M) �β λzo.z for every M ∈ A(G ′) = A(G). Therefore,
O(G) �= ∅ iff λzo.z ∈ O(G ′). ()

334 R. Yoshinaka and M. Kanazawa

The following proposition is an easy corollary to a result obtained by de Groote
et al. [3]

Proposition 2. The emptiness problem for ACGs is decidable iff the multiplica-
tive exponential linear logic (MELL) is decidable.

Proof. Let G = 〈Σ0,Σ1,L , s〉 be an ACG, where Σ0 = 〈A0,C0, τ0〉, C0 =
{c1, . . . , cn}, and τ0(ci) = Ai for 1 ≤ i ≤ n. Then O(G) �= ∅ iff A(G) �= ∅ iff
!A1, . . . , !An ⇒ s is provable in MELL. This proves the “if” direction.

The “only if” direction can be proved as follows. De Groote et al. [3] show
that the decidability of MELL is equivalent to the decidability of a fragment of
it called IMELL�

0 . Formulas of IMELL�
0 are of the form !A or A, where A is a

pure implicative formula, and the right-hand side of a sequent of IMELL�
0 must

be a pure implicative formula. Given a sequent S =!A1, . . . , !An, B1, . . . , Bm ⇒
C of IMELL�

0 , we can always form an ACG G S = 〈Σ0,Σ1,L , s〉 such that
Σ0 = 〈AS∪{s},C0, τ0〉, AS is the set of atomic formulas in the sequent S, s �∈ AS ,
C0 = {ci | 1 ≤ i ≤ n} ∪ {b}, τ0(ci) = Ai and τ0(b) = (B1 � · · · � Bm � C) �
s. (For instance, let Σ1 = 〈{o},∅,∅〉, L (p) = str for all p ∈ AS ∪ {s} and
let L (c) = ZL (τ0(c)) for all c ∈ C0.) Then S is provable in IMELL�

0 iff S is
provable in MELL iff A(G S) �= ∅ iff O(G S) �= ∅. ()

The decidability of MELL is still open but it is known to be at least as hard
as Petri-net reachability, which is at least EXPSPACE-hard [9]. Indeed, we can
represent Petri-net reachability sets by ACGs directly using a reduction from
vector addition systems (VASs), which are equivalent to Petri-nets.

Definition 4. An m-dimensional vector addition system (m-VAS) V is a pair
〈Δ,&s〉, where Δ is a finite subset of Zm and &s ∈ Nm. We call Nm the set of
configurations. ⇒�d for &d ∈ Zm is a binary relation on Nm such that for &a,&b ∈ Nm,
&a⇒�d

&b iff&b = &a+&d. The union of ⇒�d for &d ∈ Δ is denoted by ⇒Δ. A configuration
&b is reachable iff &s ⇒∗

Δ
&b. The reachability set R(V) ⊆ Nm of an m-VAS V is

the set of reachable configurations.

Definition 5. If w is a string over an alphabet C = {c1, . . . , cm} (or a λ-term in
Λ(〈A ,C , τ〉) for some A and τ), we write #i(w) for the number of occurrences
of ci in w. We call #(w) = 〈#1(w), . . . ,#m(w)〉 the Parikh vector of w. If L is
a language over C , the Parikh image of L, denoted #(L), is the subset of Nm

defined by #(L) = {#(w) | w ∈ L}.
A set of vectors of natural numbers Γ ⊆ Nm is linear iff there are &a1, . . . ,&an,&b ∈

Nm such that Γ = {&b+
∑n

j=1 kj&aj | kj ∈ N}. Γ ⊆ Nm is semilinear iff there are
linear sets Γ1, . . . , Γn ⊆ Nm such that Γ =

⋃n
i=1 Γi. Let L be a string language

over an alphabet C = {c1, . . . , cm} (or L ⊆ Λ(〈A ,C , τ〉) for some A and τ). L
is linear (semilinear) iff the Parikh image of L is linear (semilinear).

Proposition 3. For every reachability set R(V), there is an ACG G V such that
R(V) = #(O(G V)).

The Complexity and Generative Capacity of Lexicalized ACGs 335

Proof. Suppose that an m-VAS V = 〈Δ,&s〉 is given. Let us define a set A0 of
atomic types and a function ρ : Zm → T (A0) as follows:

A0 = {pi | 1 ≤ i ≤ m} ∪ {q}

ρ(&d) = (pν(d1)
1 � · · · � pν(dm)

m � q) � p
π(d1)
1 � · · · � pπ(dm)

m � q

where ν(di) =

{
0 if di ≥ 0
−di otherwise

, π(di) =

{
0 if di ≤ 0
di otherwise

Let G V = 〈Σ0,Σ1,L , q〉 with Σ0 = 〈A0,C0, τ0〉 and Σ1 = 〈{o},C1, τ1〉 where
C0 = {ai | 1 ≤ i ≤ m} ∪ {b�d | &d ∈ Δ} ∪ {c}, τ0(ai) = pi, τ0(b�d) = ρ(&d), τ0(c) =
ps1
1 � · · · � psm

m � q, C1 = {ei | 1 ≤ i ≤ m}, τ1(ei) = str , L (pi) = L (q) = str ,
L (ai) = ei, L (b�d) = ZL (ρ(�d)), and L (c) = ZL (τ0(c)). Then, we see that &b ∈
R(V) iff there is P ∈ O(G V) such that #(P) = &b. The “if” part can be shown
by induction on the total number of occurrences of b�d for &d ∈ Δ in M ∈ A(G V)
such that L (M) �β P ∈ O(G V). The “only if” part can be shown by induction
on n where n is such that &s⇒n

Δ
&b. ()

Corollary 1. There is an ACL which is not semilinear.

Proof. It is known that there is a VAS whose reachability set is not semilinear [6].
This implies that there is an ACG which generates a non-semilinear language
by Proposition 3. ()

3 The Class of Lexicalized Abstract Categorial
Languages

In this section, we investigate the class of lexicalized ACGs (LACGs).

Definition 6. Let G = 〈Σ0,Σ1,L , s〉 be an ACG. An abstract constant c ∈ C0

is lexical iff L (c) contains an object constant. G is lexicalized iff every abstract
constant c ∈ C0 is lexical.

Corollary 2. There is a language defined by an LACG (LACL) which is not
semilinear.

Proof. Let V be an m-VAS whose reachability set is non-semilinear. We obtain
an LACG G ′ from the ACG G V in the proof of Proposition 3 by adding a new
constant f of type str to C1 and redefining L by L (ai) = ei, L (b�d) = Z

L (ρ(�d))
f ,

and L (c) = Z
L (τ0(c))
f , where Zγ

f is as in Lemma 2. Since #(O(G V)) can be
obtained from #(O(G ′)) by a projection, and semilinearity is preserved under
projections, the non-semilinearity of the former implies the non-semilinearity of
the latter. ()

336 R. Yoshinaka and M. Kanazawa

Corollary 3. The emptiness problem for LACGs is decidable iff the multiplica-
tive exponential linear logic (MELL) is decidable.

Proof. We can lexicalize the ACG G S in the proof of Proposition 2 by Lemma 2.
()

Proposition 4. The universal membership problem for LACGs is in NP.

Proof. For an ACG G = 〈Σ0,Σ1,L , s〉, if L (S) �β T ∈ Λ(Σ1), the number
of occurrences of constants in S does not exceed the number of occurrences of
constants in T . Let T have m occurrences of constants. T ∈ O(G) iff there
are abstract constants c1, . . . , cn for some n ≤ m and a combinator X of type
τ0(c1) � · · · � τ0(cn) � s such that L (Xc1 . . . cn) �β T . The size of a linear
combinator X is bounded by a polynomial function of the size of its type and
the number of β-reduction steps needed to eliminate redexes of a linear λ-term
M is bounded by the size of M . This shows that the question “T ∈ O(G)?” is
in NP. ()

Moreover, by the NP-hardness of the implicational fragment of intuitionistic
linear logic (IMLL�) [7], the NP-hardness of the universal membership problem
for LACGs holds.

Proposition 5. The universal membership problem for LACGs is NP-complete.

Proof. For a given sequent S = A1, . . . , An ⇒ B of IMLL�, we define an ACG
G S = 〈Σ0,Σ1,L , s〉 where Σ0 = 〈AS ∪ {s}, {a}, τ0〉, AS is the set of atomic
formulas in the sequent S, s �∈ AS , τ0(a) = (A1 � · · · � An � B) � s, Σ1 =
〈{o}, {c}, {c �→ str}〉, L (p) = str for all p ∈ AS ∪ {s}, and L (a) = Z

L (τ0(a))
c .

Then, S is provable in IMLL� iff λzo.cz ∈ O(G S). ()

A question that naturally suggests itself at this point is whether or not there
is an LACL which is NP-complete. We answer this question in the affirmative
in the remainder of this section.

3.1 An NP-Complete Variation of the Satisfiability Problem

Definition 7. Let V be a finite set of Boolean variables. Members of V are called
positive literals and members of ¬V = {¬v | v ∈ V } are called negative literals.
V∪¬V is the set of literals. A conjunctive normal form formula (CNF) F on V is
a collection of clauses, which are non-empty subsets of V ∪¬V. A valuation ψ on
V is a mapping from V ∪ ¬V to {0, 1} such that ψ(v) + ψ(¬v) = 1 for all v ∈ V.
A clause C ∈ F is satisfied by a valuation ψ via a literal x ∈ V ∪ ¬V iff x ∈ C
and ψ(x) = 1. A CNF F is satisfied by a valuation ψ iff every C ∈ F is satisfied
by ψ. A CNF F is satisfiable iff there is ψ that satisfies F . A 2P1N-CNF is a
special form of a CNF such that every Boolean variable v ∈ V positively occurs
at most twice in F and negatively occurs at most once in F .

It is well known that the problem of determining whether or not a given CNF
F is satisfiable is NP-complete.

The Complexity and Generative Capacity of Lexicalized ACGs 337

Theorem 2. The question of whether or not a given 2P1N-CNF F is satisfiable
is NP-complete.

Proof. For a given CNF F on V, we construct a 2P1N-CNF F ′ on V ′ such that
F is satisfiable iff F ′ is satisfiable as follows.

(i) For each vi ∈ V, let mi be the number of occurrences of the positive literal
vi in F and ni be the number of occurrences of the negative literal ¬vi in F .

(ii) Introduce new Boolean variables vi,j for 1 ≤ j ≤ mi and ui,k for 1 ≤ k ≤ ni.
(iii) Replace the j-th occurrence of the positive literal vi with vi,j for all j.
(iv) Replace the k-th occurrence of the negative literal ¬vi with ui,k for all k.
(v) Add clauses {vi,j ,¬vi,j+1} for 1 ≤ j < mi, {vi,mi , ui,1}, {¬ui,k, ui,k+1} for

1 ≤ k < ni, and {¬ui,ni
,¬vi,1}. (If mi = 0, add the clause {¬ui,ni

, ui,1}. If
ni = 0, add the clause {vi,mi

,¬vi,1}.) ()

3.2 Universal Membership Problem

Although the complexity of the universal membership problem for LACGs has
already been clarified, we present an alternative proof of its NP-completeness,
since our technique for presenting an NP-complete LACL is an elaboration of
this alternative proof.

Definition 8. Suppose that a 2P1N-CNF F = {C1, . . . , Cm} on V = {v1, . . . , vl}
is given. Let G m,l = 〈Σm,l

0 ,Σm,l
1 ,L m,l, s〉 where Σm,l

0 = 〈{o, s},C m,l
0 , τm,l

0 〉 and
Σm,l

1 = 〈{o},C m,l
1 , τm,l

1 〉. L m,l(o) = o, L m,l(s) = str , and τm,l
1 (x) = str for

every constant x ∈ C m,l
1 . The other sets and functions are defined as follows,

where 1 ≤ i ≤ l and 1 ≤ j ≤ m:

x ∈ C m,l
0 τm,l

0 (x) L m,l(x)
A (o � o) � s λystr .(a + y)

Qj,i ((o � o)3 � o � o) � o � o λxstr3�str .xcjvipj,i

Mj,i ((o � o)3 � o � o) � o � o λxstr3�str .xcj(vi + vi)nj,i

Vi o � o vi

Pj,i o � o pj,i

Nj,i o � o nj,i

Let
TF = a + c1 + c2 + · · · + cm + v1 + v1 + v2 + v2 + · · · + vl + vl + &pF + &nF

where &pF is the concatenation of pj,i such that vi ∈ Cj and &nF is the concatena-
tion of nj,i such that ¬vi ∈ Cj .

Note that G m,l depends only on the number of Boolean variables and the number
of clauses in F . The essence of F is encoded in &pF and &nF in TF . Therefore, we
state that for every 2P1N-CNF F such that F contains at most m clauses and
at most l Boolean variables, TF ∈ O(G m,l) iff F is satisfiable.

338 R. Yoshinaka and M. Kanazawa

Example 1.

Instance F : C1 = {v1, v2}, C2 = {v2, v3}, C3 = {v1,¬v2}, C4 = {¬v1,¬v3}
Reduction : TF = a + c1 + c2 + c3 + c4 + v1 + v1 + v2 + v2 + v3 + v3

+ p1,1 + p1,2 + p2,2 + p2,3 + p3,1 + n3,2 + n4,1 + n4,3

The only valuation ψ which satisfies F is such that ψ(v1) = 1, ψ(v2) = 1 and
ψ(v3) = 0. Then, corresponding to the fact that ψ satisfies C1 via v1, C2 via v2,
C3 via v1, and C4 via ¬v3, we use Q1,1, Q2,2, Q3,1 and M4,3 to construct a λ-term
S ∈ A(G 4,3) such that L 4,3(S) �β TF . Let

S = A(Q1,1(λw1u1y1.Q2,2(λw2u2y2.Q3,1(λw3u3y3.M4,3(λw4u4y4.

λzo.w1(w2(w3(w4(u1(u3(u2(V2(u4(y1(P1,2(y2(P2,3(y3(N3,2(N4,1(y4z) . . .)

where all of variables wj , uj , and yj have type o � o. Then, L 4,3(S) �β TF .

Lemma 3. TF ∈ O(G m,l) whenever F is satisfiable.

Proof. Suppose that F is satisfied by a valuation ψ. Then, one can find a function
φ : F → V ∪ ¬V such that φ(Cj) = vi only if ψ(vi) = 1 and vi ∈ Cj , and
φ(Cj) = ¬vi only if ψ(vi) = 0 and ¬vi ∈ Cj . Let Sφ ∈ A(G m,l) be defined as
follows:

Sφ = A(S1(λw1u1y1.(. . . (Sm(λwmumym.S
′
φ)) . . .)))

for S′
φ the β-normal form of λz.w1(. . . (wm(V1(. . . (Vl(&P (&Nz))) . . .))) . . .)

where Sj =

{
Qj,i if φ(Cj) = vi

Mj,i if φ(Cj) = ¬vi

Vi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λz.uj(ukz) if φ(Cj) = vi and φ(Ck) = vi for j < k

λz.uj(Viz) if φ(Cj) = vi for exactly one j
uj if φ(Cj) = ¬vi

λz.Vi(Viz) otherwise

&P is the appropriate composition of Pj,i for vi ∈ Cj where

Pj,i =

{
yj if φ(Cj) = vi

Pj,i otherwise

&N is the appropriate composition of Nj,i for ¬vi ∈ Cj where

Nj,i =

{
yj if φ(Cj) = ¬vi

Nj,i otherwise

Note that Vi is well-defined, since F is 2P1N.
The linearity of Sφ is easy to see. Clearly each wj and uj for 1 ≤ j ≤ m

appears in S′
φ exactly once. If φ(Cj) = vi, then vi ∈ Cj and thus Pj,i = yj is in

&P indeed. If φ(Cj) = ¬vi, then yj appears in &N . Thus, Sφ ∈ A(G m,l).

The Complexity and Generative Capacity of Lexicalized ACGs 339

It remains to show L m,l(Sφ) �β TF . Fix j and suppose that φ(Cj) = vi.
Since L m,l(Sj) = L m,l(Qj,i) = λx.xcjvipj,i, in the β-reduction from L m,l(Sφ)
to its β-normal form, cj is substituted for wj in S′

φ, vi for uj , and pj,i for yj .
Suppose that φ(Cj) = ¬vi. Since L m,l(Sj) = L m,l(Mj,i) = λx.xcj(vi + vi)nj,i,
cj is substituted for wj in S′

φ, vi + vi for uj , and nj,i for yj in the β-reduction
from L m,l(Sφ) to its β-normal form. Thus, by these substitutions, wj in S′

φ is
replaced with cj for all j, Vi with vi + vi for all i, Pj,i with pj,i for all Pj,i in &P ,
and Nj,i with nj,i for all Nj,i in &N . Therefore, L m,l(Sφ) �β TF ∈ O(G m,l). ()

Lemma 4. F is satisfiable whenever TF ∈ O(G m,l).

Proof. Suppose that there is S ∈ A(G m,l) such that L m,l(S) �β TF . We define
a valuation ψ as follows:

ψ(vi) =

⎧⎪⎨
⎪⎩

1 if Qj,i appears in S for some j
0 if Mj,i appears in S for some j
any value otherwise

It is easy to verify that ψ is well defined, because if there are i, j and k such that
both Qj,i and Mk,i are in S, then vi must occur at least three times in L m,l(S).
We confirm that every Cj is satisfied by ψ. It is clear that for every cj in TF ,
there is exactly one i such that either Qj,i or Mj,i appears in S. If Qj,i is in S,
since L m,l(Qj,i) contains pj,i, then L m,l(S) and TF also contain pj,i. That is,
vi ∈ Cj by the definition of TF . So, Cj is satisfied by ψ via vi. When Mj,i is in
S, similarly ψ satisfies Cj via ¬vi. ()

Proposition 6. F is satisfiable iff TF ∈ O(G m,l).

3.3 An NP-Complete Lexicalized Abstract Categorial Language

In this subsection, we present an LACG which generates an NP-complete lan-
guage. We construct an LACG G ∗ = 〈Σ∗

0 ,Σ
∗
1 ,L

∗, s〉 such that for every 2P1N-
CNF F , one can find T ∗

F such that T ∗
F ∈ O(G ∗) iff F is satisfiable. Let C ∗

1 =
{a, [[,]], c, d, v, p, n}. We use the following λ-terms in Λ(Σ∗

1), which play the role
played by cj , vi, pj,i, nj,i ∈ C m,l

1 in the preceding construction:

Cj = [[+

j-times︷ ︸︸ ︷
c + · · · + c +]]

Vi = [[+
i-times︷ ︸︸ ︷

v + · · · + v +]]

Pj,i = [[+

j-times︷ ︸︸ ︷
d + · · · + d +

i-times︷ ︸︸ ︷
p + · · · + p +]]

Nj,i = [[+

j-times︷ ︸︸ ︷
d + · · · + d +

i-times︷ ︸︸ ︷
n + · · · + n +]]

340 R. Yoshinaka and M. Kanazawa

Let

T ∗
F = a + C1 + · · · + Cm + V1 + V1 + · · · + Vl + Vl + &PF + &NF

where Pj,i appears in &PF iff vi ∈ Cj , and Nj,i appears in &NF iff ¬vi ∈ Cj . By the
brackets [[and]], no other interpretation of T ∗

F as a concatenation of a, Cj , Vi, Pj,i

and Nj,i is allowed, e.g., V3 +V3 cannot be interpreted as V2 +V2 +V2 etc. Thus,
the remaining task is to make sure that, whenever Cj appears as a substring of
some T ∈ O(G ∗), either Vi and Pj,i or Vi +Vi and Nj,i appear as substrings of T
for some i. (Recall that L m,l(Qj,i) = λx.xcjvipj,i and L m,l(Mj,i) = λx.xcj(vi +
vi)nj,i.)

Definition 9. Let G ∗ = 〈Σ∗
0 ,Σ

∗
1 ,L

∗, s〉 with Σ∗
0 = 〈A ∗

0 ,C
∗
0 , τ

∗
0 〉 and Σ∗

1 =
〈A ∗

1 ,C
∗
1 , τ

∗
1 〉, where A ∗

0 = {o, c, p, n, s}, A ∗
1 = {o}, τ∗

1 (x) = str for every
constant x ∈ C ∗

1 , L ∗(o) = o, L ∗(c) = str2 � str , L ∗(p) = str3 � str ,
L ∗(n) = str4 � str , L ∗(s) = str , and the other set and functions are defined
as follows:

x ∈ C ∗
0 τ∗

0 (x) L ∗(x)
A (o � o) � s λy0.(a + y0)
L c � o � o λx2.x2[[[[
C c � c λx2y1y2.x2(y1 + c)(y2 + d)
Op p � c λx3y1y2.x3(y1 +]])[[y2
Up p � p λx3y1y2y3.x3y1(y2 + v)(y3 + p)
Rp ((o � o)3 � o � o) � p λx3y1y2y3.x3y1(y2 +]])(y3 +]])
On n � c λx4y1y2.x4(y1 +]])[[[[y2
Un n � n λx4y1y2y3y4.x4y1(y2+v)(y3+v)(y4+n)
Rn ((o � o)3 � o � o) � n λx3y1y2y3y4.x3y1(y2+]]+y3+]])(y4+]])

[[,]],D,V,P,N o � o [[,]], d, v, p, n, respectively

where the type of each xi is str i � str and the type of each yi is str .

Lemma 5. T ∗
F ∈ O(G∗) whenever F is satisfiable.

Proof. Let us define the following λ-terms in Λ(Σ∗
0) as follows, which play the

role played by Vi,Pj,i,Nj,i,Qj,i,Mj,i ∈ C m,l
0 in the preceding construction:

V̄i = λzo.[[(

i-times︷ ︸︸ ︷
V(. . . (V(]]z)) . . .))

P̄j,i = λzo.[[(

j-times︷ ︸︸ ︷
D(. . . (D(

i-times︷ ︸︸ ︷
P(. . . (P(]]z)) . . .))) . . .))

N̄j,i = λzo.[[(

j-times︷ ︸︸ ︷
D(. . . (D(

i-times︷ ︸︸ ︷
N(. . . (N(]]z)) . . .))) . . .))

Q̄j,i = λx(o�o)3�o�o.L(

j-times︷ ︸︸ ︷
C(. . . (C(Op(

i-times︷ ︸︸ ︷
Up(. . . (Up(Rpx)) . . .)))) . . .))

M̄j,i = λx(o�o)3�o�o.L(

j-times︷ ︸︸ ︷
C(. . . (C(On(

i-times︷ ︸︸ ︷
Un(. . . (Un(Rnx)) . . .)))) . . .))

The Complexity and Generative Capacity of Lexicalized ACGs 341

where τ∗
0 (V̄i) = τ∗

0 (P̄j,i) = τ∗
0 (N̄j,i) = o � o and τ∗

0 (Q̄j,i) = τ∗
0 (M̄j,i) =

((o � o)3 � o � o) � o � o. Then, L ∗(V̄i) = Vi, L ∗(P̄j,i) = Pj,i,
and L ∗(N̄j,i) = Nj,i. It is easy to see that L ∗(Q̄j,i) �β λx.xCjViPj,i and
L ∗(M̄j,i) �β λx.xCj(Vi + Vi)Nj,i.

Suppose that F is satisfiable. Let S∗ be the β-normal form of S∗
φ obtained by

replacing Vi in Sφ in the proof of Lemma 3 with V̄i, Pj,i with P̄j,i, Nj,i with N̄j,i,
Qj,i with Q̄j,i, and Mj,i with M̄j,i. Then, S∗ ∈ A(G ∗) and L ∗(S∗) �β T

∗
F . ()

Lemma 6. F is satisfiable whenever T ∗
F ∈ O(G ∗).

Proof. If S[&y] ∈ Λ(Σ∗
0) of type o � o has free variables &y of type o � o, then S

is in one of the following forms:

S[&y] =βη λz.S′[&y1](S′′[&y2]z) where &y = &y1 &y2 (1)
or λz.z only if &y = ∅ (2)
or y only if &y = y (3)
or w ∈ {[[,]],D,V,P,N} only if &y = ∅ (4)
or L(C(. . . (C(Op(Up(. . . (Up(Rp(λy1y2y3.S′[&yy1y2y3]))) . . .)))) . . .)) (5)
or L(C(. . . (C(On(Un(. . . (Un(Rn(λy1y2y3.S′[&yy1y2y3]))) . . .)))) . . .)) (6)

where S′ and S′′ have the type o � o and are also in one of these forms. If a
λ-term S is in the form of (5), then we see Q̄j,i(λy1y2y3.S′[&yy1y2y3]) →β S[&y],
and if S is in the form of (6), then M̄j,i(λy1y2y3.S′[&yy1y2y3]) →β S[&y], where
Q̄j,i and M̄j,i are as in Lemma 5. So, we can rewrite (5) and (6) as follows:

Q̄j,i(λy1y2y3.S′[&yy1y2y3]) (5’)
M̄j,i(λy1y2y3.S′[&yy1y2y3]) (6’)

Clearly every λ-term in A(G ∗) is of the form AS for some S of type o � o.
Now, suppose that L ∗(AS) �β T ∗

F . We can assume that S is recursively con-
structed by (1)–(4), (5’) and (6’). Thus, the only ways to construct Cj as a
substring of the β-normal form of L ∗(AS) are to use Q̄j,i or M̄j,i in S for some i
as in (5’) or (6’) by Lemma 1. Therefore, the following valuation ψ is well-defined
and satisfies F as in Lemma 4.

ψ(vi) =

⎧⎪⎨
⎪⎩

1 if Q̄j,i is used for some j
0 if M̄j,i is used for some j
any value otherwise ()

Proposition 7.The problem of determining whether T ∈O(G ∗) is NP-complete.2

2 S. Salvati (personal communication) has independently obtained an alternative proof
of this proposition using a reduction from 3-PARTITION.

342 R. Yoshinaka and M. Kanazawa

4 Second-Order Abstract Categorial Grammars

Although we lack a good characterization of the class of general ACLs, we expect
it to be much broader than the class of LACLs. In this section, we focus on a
small subclass of the class of ACGs, in which every grammar has an equivalent
lexicalized grammar if combinators in the object language are disregarded. We
say that an ACG G is second-order iff the order of the type of each abstract con-
stant of G is at most two. ACGs used by de Groote and Pogodalla to simulate
m-linear context-free rewriting systems [4,5] and tree-adjoining grammars [2] are
second-order ACGs (2ACGs) in this sense. Kracht [8] defines de Saussure gram-
mars, which generate sets of pairs of λ-terms whose first component represents
strings. It is easy to see that the lexicalized 2ACGs (L2ACGs) are equivalent
to de Saussure grammars with the restriction of linearity added, if we view the
latter as generating string languages.3

If G is a 2ACG, every M ∈ A(G) is a pure application term. This means
that A(G) can be identified with the set of derivation trees of a context-free
grammar.

Proposition 8. Every 2ACL is semilinear.

Proof. The semilinearity of context-free languages implies that #(A(G)) is semi-
linear for every 2ACG G . Since the lexicon L is a linear translation which maps
#(M) to #(L (M)) for M ∈ Λ(Σ0) and semilinearity is preserved under linear
translations, #(O(G)) is also semilinear. ()

The above result is optimal in the sense that the types of the abstract constants of
an ACG G V in the proof of Proposition 3, which may generate a non-semilinear
language, are at most third-order.

We construct an L2ACG equivalent to a given 2ACG in the remainder of this
section.

Lemma 7. For a λ-term M , let C(M) be the multiset of constants such that
for each c ∈ C , c is an element of C(M) with multiplicity n iff c occurs in M n
times. Fix a type γ and a multiset C of constants. There are finitely many closed
λ-terms M of type γ modulo =β such that C(M) is a sub-multiset of C.

Definition 10. Let a 2ACG G = 〈Σ0,Σ1,L , s〉 and an abstract atomic type
p ∈ A0 be given. An n-loop on p is a sequence 〈M1, . . . ,Mn〉 of λ-terms Mi ∈
Λ(Σ0) of type p each of which contains a lexical constant and a free variable
yi of type p. A λ-term M ∈ Λ(Σ0) contains an n-loop 〈M1, . . . ,Mn〉 iff there
are M0 and Mn+1 such that M = M0[M1[. . . [Mn[Mn+1/yn]/yn−1] . . .]/y0] with
y0 ∈ Fv(M0).

3 S. Salvati (personal communication) has shown that every 2ACG generates a PTIME
language.

The Complexity and Generative Capacity of Lexicalized ACGs 343

Definition 11. Fix G = 〈Σ0,Σ1,L , s〉 with Σ0 = 〈A0,C0, τ0〉 and G ′ = 〈Σ′
0,

Σ1,L ′, s〉 with Σ′
0 = 〈A0,C ′

0, τ
′
0〉. For M ∈ Λ(Σ0) and M ′ ∈ Λ(Σ′

0), M ∼M ′ iff
τ0(M) = τ ′

0(M
′) and L (M) =β L ′(M ′).

Definition 12. For a 2ACG G = 〈Σ0,Σ1,L , s〉, define the set ΘG of basic
λ-terms of G as follows:

Θ0
G = {M ∈ Λ(Σ0) |M is closed, of an atomic type, and contains

at least one lexical constant but no 3-loop. }
ΘG = {λ&x.M0 ∈ Λ(Σ0) |M0[&M/&x] ∈ Θ0

G ,

each λ-term in &M,M0 contains a lexical constant, and
&M and &x have atomic types (&x and &M can be empty). }

Note that every M ∈ Θ0
G contains no variables or λ-abstractions.

Lemma 8. For every 2ACG G , ΘG is finite up to ∼.

Proof. By Lemma 7 and the definition of ΘG , it is enough to show an upper
bound KG on the number of occurrences of lexical constants in M ∈ Θ0

G . This
is because the size of the type of λ&x.M0 ∈ ΘG and the number of occurrences
of lexical constants in λ&x.M0 are both bounded by KG , and hence the type of
L (λ&x.M0) and the number of constants in L (λ&x.M0) are both bounded, since
L is a homomorphism.

Let n = max{n | τ0(c) = p1 � · · · � pn � q for pi, q ∈ A0, c ∈ C0 } and
|M | denote the number of occurrences of lexical constants in M ∈ Λ(Σ0). Since
M ∈ Θ0

G can be identified with a derivation tree of a context-free grammar, we
can give an upper bound KG in a way similar to the proof of Ogden’s Lemma
for context-free grammars.

We define a sequence 〈M = M0, . . . ,Mm〉 of λ-terms of atomic types such
that Mi+1 is a subterm of Mi and |Mi| > |Mi+1|. Let M0 = M . Suppose that
Mi is defined. If |Mi| = 1, then let m = i and halt. Otherwise, take the smallest
subtermM ′

i ofMi such that |Mi| = |M ′
i | and τ0(M ′

i) ∈ A0. ForM ′
i = cN1 . . . Nn′

for n′ ≤ n, let j be such that |Nj | ≥ |Nj′ | for any 1 ≤ j′ ≤ n′. Define Mi+1 = Nj .
Because M has no 3-loop, we have m ≤ 3|A0|. By the definition, |Mm| = 1

and |Mi| ≤ n|Mi+1| + 1 for all 0 ≤ i < m. Therefore, |M0| ≤ (n+ 1)3|A0|. ()

Proposition 9. For every 2ACG G , there is an L2ACG G ′ such that O(G) =
O(G ′) ∪ Ω for Ω = {P ∈ O(G) |P is a combinator }.

Proof. For a given 2ACG G = 〈Σ0,Σ1,L , s〉 with Σ0 = 〈A0,C0, τ0〉, we define
an L2ACG G′ = 〈Σ′

0,Σ1,L ′, s〉 with Σ′
0 = 〈A0,C ′

0, τ
′
0〉 where

C ′
0 = {cΓ |Γ ∈ ΘG /∼},

τ ′
0 = {cΓ �→ τ0(M) |M ∈ Γ ∈ ΘG /∼},

L ′(p) = L (p) for all p ∈ A0, and
L ′(cΓ) is the β-normal form of L (M) for M ∈ Γ .

344 R. Yoshinaka and M. Kanazawa

By Lemma 8, C ′
0 is finite.

Clearly O(G ′) ∪ Ω ⊆ O(G). To prove that O(G) ⊆ O(G ′) ∪ Ω, we show the
following claim by induction on the size of M :

– Let M ∈ Λ(Σ0) have an atomic type and contain a lexical constant but no
variables. If M = M0[&M/&x] where each λ-term in &M,M0 contains a lexical
constant and each λ-term in &M has an atomic type, then there is N0 ∈ Λ(Σ′

0)
such that N0 ∼M0.

Considering the case M = M0 ∈ A(G), the proposition follows from the claim.
(Base) If M = M0[&M/&x] ∈ Θ0

G , λ&x.M0 ∈ ΘG for a sequence &x made up of the
variables in Fv(M0). Then, cΓ&x ∼M0 for cΓ ∈ C ′

0 such that λ&x.M0 ∈ Γ ∈ ΘG /∼.
(Step) Suppose that M = M0[&M/&x] contains a 3-loop.
(Case 1) M0 contains a 3-loop 〈L1, L2, L3〉. Then, there are L0 and L4 such

that M0 = L0[L1[L2[L3[L4/y3]/y2]/y1]/y0]. Let us divide &x into three parts &x1,
&x2, and &x3, where &x1, &x2, and &x3 are sequences made up of the variables in
Fv(L0)∪Fv(L1)−{y0, y1}, Fv(L2)−{y2}, and Fv(L3)∪Fv(L4)−{y3}, respec-
tively. Let &Mj for 1 ≤ j ≤ 3 be the λ-terms such that M0[&Mj/&xj]1≤j≤3 = M . By
applying the induction hypothesis to L0[L1/y0][L3[L4/y3][&M3/&x3]/y1, &M1/&x1],
we obtain N ′

0 ∈ Λ(Σ′
0) with N ′

0 ∼ L0[L1/y0]. By applying the induction hy-
pothesis to L2[L3[L4/y3]/y2][&M2/&x2, &M3/&x3], we obtain N ′′

0 ∈ Λ(Σ′
0) with N ′′

0 ∼
L2[L3[L4/y3]/y2]. Let N0 = N ′

0[N
′′
0 /y1]. Then, N0 ∼M0.

(Case 2) There are a λ-term Mk in &M and λ-terms L0, L1, L2, L
′
3, L

′′
3 , L4 such

that ⎧⎪⎨
⎪⎩
M0 = L0[L1[L2[L′

3/y2]/y1]/y0]
Mk = L′′

3 [L4/y3]
M0[Mk/xk] = L0[L1[L2[L′

3[L
′′
3 [L4/y3]/xk]/y2]/y1]/y0]

and 〈L1, L2, L
′
3[L

′′
3/xk]〉 is a 3-loop. Let us divide &x into three parts &x1, &x2, and

&x3, where &x1, &x2, and &x3 are sequences made up of the variables in Fv(L0) ∪
Fv(L1)−{y0, y1}, Fv(L2)−{y2}, and Fv(L′

3), respectively. Let &Mj for 1 ≤ j ≤ 3
be the λ-terms such that M0[&Mj/&xj]1≤j≤3 = M . Note that xk is in &x3 and thus
L′

3[&M3/&x3] contains a lexical constant. By applying the induction hypothesis to
L0[L1/y0][L′

3[&M3/&x3]/y1, &M1/&x1], we obtain N ′
0 ∼ L0[L1/y0]. By applying the

induction hypothesis to L2[L′
3/y2][&M2/&x2, &M3/&x3], we obtain N ′′

0 ∼ L2[L′
3/y2].

Let N0 = N ′
0[N

′′
0 /y1]. Then N0 ∼M0.

(Case 3) There are Mk in &M and L0, L1, L
′
2, L

′′
2 , L3, L4 such that⎧⎪⎨

⎪⎩
M0 = L0[L1[L′

2/y1]/y0]
Mk = L′′

2 [L3[L4/y3]/y2]
M0[Mk/xk] = L0[L1[L′

2[L
′′
2 [L3[L4/y3]/y2]/xk]/y1]/y0]

and 〈L1, L
′
2[L

′′
2/xk], L3〉 is a 3-loop. There are two subcases.

(Case 3.1) L′
2 contains a lexical constant. Let us divide &x into two parts &x1 and

&x2, where &x1 and &x2 are sequences made up of the variables in Fv(L0)∪Fv(L1)−

The Complexity and Generative Capacity of Lexicalized ACGs 345

{y0, y1} and Fv(L′
2), respectively. We obtain N ′

0 ∼ L0[L1/y0] by applying the
induction hypothesis to L0[L1/y0][L3[L4/y3]/y1, &M1/&x1]. We obtain N ′′

0 ∼ L′
2

by applying the induction hypothesis to L′
2[&M2/&x2]. Then, N ′

0[N
′′
0 /y1] ∼M0.

(Case 3.2) L′′
2 contains a lexical constant. We obtain N0 ∼ L0[L1[L′

2/y1]/y0]
by applying the induction hypothesis to L0[L1[L′

2/y1]/y0][&M
′/&x] where &M ′ is

obtained from &M by replacing Mk with L′′
2 [L4/y2].

(Case 4) If there are a λ-term Mk in &M and λ-terms L1, L2, L3, L4 such
that Mk = L1[L2[L3[L4/y3]/y2]/y1] and 〈L2, L3〉 is a 2-loop, then it is easy to
verify the claim by applying the induction hypothesis to M0[&M ′/&x] where &M ′ is
obtained from &M by replacing Mk with L1[L2[L4/y2]/y1]. ()

Proposition 9 implies that every 2ACG generating a string language not con-
taining the empty string has an equivalent L2ACG. Although the construction
of G ′ from G as given in the proof of Proposition 9 is not effective, it can be
made so. It does not follow, however, that the universal membership for the class
of 2ACGs is in NP, since the size of G ′ may be exponential in the size of G .

5 Conclusion and Open Problems

The results in this paper imply that the class of LACLs properly includes the
the class of languages generated by linear context-free rewriting systems even
though it is a (probably) small subclass of the class of ACLs. There are many
related open problems on the formal properties of ACGs:

– the exact generative capacity of the class of ACGs and the complexity of its
universal membership problem;

– the relation between the class of LACLs and other subclasses of NP which
contain some NP-complete languages, e.g., the class of indexed languages [11];

References

[1] Philippe de Groote. Towards abstract categorial grammars. In Association for
Computational Linguistics, 39th Annual Meeting and 10th Conference of the Eu-
ropean Chapter, Proceedings of the Conference, pages 148–155, 2001.

[2] Philippe de Groote. Tree-adjoining grammars as abstract categorial grammars.
In TAG+6, Proceedings of the 6th International Workshop on Tree Adjoining
Grammars and Related Frameworks, pages 145–150. Università di Venezia, 2002.

[3] Philippe de Groote, Bruno Guillaume, and Sylvain Salvati. Vector addition tree
automata. In Proceedings of the 19th Annual IEEE symposium on Logic in Com-
puter Science, pages 64–73, July 2004.

[4] Philippe de Groote and Sylvain Pogodalla. m-linear context-free rewriting systems
as abstract categorial grammars. In R.T.Oehrle et J. Rogers, editor, Proceedings
of Mathematics of Language - MOL-8, Bloomington, Indiana, U. S., pages 71–80,
June 2003.

346 R. Yoshinaka and M. Kanazawa

[5] Philippe de Groote and Sylvain Pogodalla. On the expressive power of abstract
categorial grammars: Representing context-free formalisms. Journal of Logic, Lan-
guage and Information, 13(4):421–438, 2004.

[6] John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. Theoretical Computer Science, 8(2):135–159,
1979.

[7] Max I. Kanovich. The complexity of Horn fragments of linear logic. Annals of
Pure and Applied Logic, 69:195–241, 1994.

[8] Marcus Kracht. The Mathematics of Language, volume 63 of Studies in Generative
Grammar, pages 447–459. Mouton de Gruyter, 2003.

[9] Richard J. Lipton. The reachability problem requires exponential space. Technical
Report 62, Department of Computer Science, Yale University, January 1976.

[10] Reinhard Muskens. Language, lambdas, and logic. In Geert-Jan Kruijff and
Richard Oehrle, editors, Resource Sensitivity in Binding and Anaphora, Studies
in Linguistics and Philosophy, pages 23–54. Kluwer, 2003.

[11] William C. Rounds. Complexity of recognition in intermediate-level languages.
In Proceedings of the 14th Annual IEEE Symposium on Switching and Automata
Theory, pages 145–158, October 1973.

More Algebras for Determiners

R. Zuber

CNRS, Paris
Richard.Zuber@linguist.jussieu.fr

Abstract. Some new algebras, which are possible denotations for vari-
ous determiners, are studied. One of them is the algebra of generalised
cardinal quantifiers which is a sub-algebra of conservative quantifiers
and which contains cardinal, co-cardinal and proportional quantifiers. In
addition some non-conservative quantifiers are studied (symmetric, con-
trapositional and fixed points with respect to the post-complement). It is
shown that co-intersective quantifiers are contrapositional. The analysis
is extended to quantifiers of higher types.

1 Introduction

The study of quantification in natural language (NL) within the framework of
generalised quantifier theory (GQT) is more than a quarter of century old. In-
spired by the results and methods of Mostowski ([13]) it has given rise to many
unforeseen secure formal and empirical results against a background of the clas-
sical quantificational logic. The range of problems treated in GQT is very large.
It concerns not only traditional logical questions such as expressive power, first
order definability or variable binding but also the documentation, classification
and study of rich variety of quantifiers in different NLs ([1] [5], [6], [7], [8],[10],
[11],[12], [15], [16],[18]). This classificatory and explanatory work shows that NL
quantifiers exhibit many specific properties and it has been conjectured that
some of these properties may characterise quantifiers in all NLs. For instance
the property of conservativity (see below) has been considered a semantic uni-
versal in the sense that all quantifiers in all NLs should satisfy it. More recent
empirical research ([7], [18]) shows that conservativity should not be considered
as an ”absolute” universal but a kind of relative universal. This roughly means
that violations of conservativity are not arbitrary but are due to very specific
contexts which still impose constraints on quantifiers which are possibly weaker
or of a different nature. Unfortunately I will not say much more about this
problem.

Another general result in GQT is that many of the constraints are Boolean
in nature: this means that the sets of objects satisfying a particular constraint
form Boolean algebras. This fact is of course compatible with a general obser-
vation that NL grammatical categories have Boolean structure ([9]). What is
interesting, however, in this case is the fact that various constraints on quan-
tifiers are often logically related, thus giving rise to an array of sub-algebras

P. Blache et al. (Eds.): LACL 2005, LNAI 3492, pp. 347–362, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

348 R. Zuber

of a fixed Boolean algebra. This means in particular that there are expressions
denoting quantifiers belonging to many algebras at the same time. Moreover, as
we will see, there are expressions which denote quantifiers which are atoms in
one algebra and which are not atoms in the corresponding super-algebra. A look
at the possible status of such expressions and their relevance in linguistics does
not seem pointless.

The purpose of this paper is to prepare formal tools which can help to cope
with these two problems: (1) how the constraints of conservativity, or similar
”universalistic” constraints can be relativised or superseded, and (2) what is the
linguistic status of expressions denoting in different but related denotational al-
gebras. Although I will use many linguistic examples I am not concerned here
with applicational issues but basically by presentation of various algebraic prop-
erties of quantifiers considered as possible denotations of NL determiners.

Most results presented in this paper are not technically complex and will be
given without proofs as obvious facts. Although many results obtained are also
valid for infinite universes I will implicitly assume their finiteness. There are
various reasons for this. First, although I am not directly concerned with issues
of computational complexity, obviously one can naturally approach such issues
only in finite contexts. Second, the finite-infinite distinction surely involves a
specific competence which very likely is not a linguistic competence. Finally,
there is a large and important class quantifiers, proportional quantifiers which
can be defined only in finite domains. I discuss this class at some length.

2 Formal Preliminaries

The version of formal semantics adopted here is the one developed by Keenan
(cf. [9]). Expressions of category C have their denotational algebra DC , the
set of possible denotations. DC are atomic (and complete) Boolean algebras.
Functional categories denote in DB/A. The set of functions from A into B will
be noted as [A→ B]. Atomicity of DB/A is inherited from the atomicity of DB .
When there are no constraints on functions from DA on DB , atoms of DB/A are
determined by atoms of DB in the following way:

Proposition: For any a ∈ DA, and for any α ∈ AT (DB), the function fa,α ∈
DB/A defined as fa,α(x) = α if x = a, and ODB

otherwise, is an atom of DB/A.
Furthermore, every element of DB/A contains an atom of this form.

Noun phrases (NP s) denote functions from properties onto truth values. They
are called quantifiers of type 〈1〉. They are elements of DNP which are sets of
sets. According to the above result, for any property P , the function fP defined
as fP (X) = 1 if X = P and fP (X) = O if X �= P is an atom of DNP . Thus
atoms of DNP are singletons which contain a set as their unique element.

In GQT quantifiers are, roughly speaking, denotations of NPs or of their
syntactic parts. Formally they are relations between sets. They can be expressed
as functions into truth-values. For instance quantifiers of type 〈1〉 are functions
from P (E), the power set of E, the universe of objects, into {0, 1}.

More Algebras for Determiners 349

In what follows we will be basically interested in the logic of denotations of
(unary) nominal determiners. These are expressions (like every, no) which com-
bine with common nouns to form noun phrases. Thus, semantically, they are
functions from P (E) onto type 〈1〉 quantifiers. They are called type 〈1, 1〉 quan-
tifiers. These quantifiers can be viewed as binary relations on sets. Indeed a type
〈1, 1〉 quantifier F , which is a function in [P (E) → [P (E) → {0, 1}]] corresponds
to the binary relation Q between sets defined by QXY ⇔ F (X)(Y) = 1. Let us
denote the set of all type 〈1, 1〉 quantifiers, or functions from [P (E) → [P (E) →
{0, 1}]] by PDET . This set forms, given Proposition, an atomic Boolean algebra
with Boolean operations defined pointwise.

Notice that Boolean character of quantifiers and their arguments allows us
to distinguish two types of negations or complements. The first is the usual
Boolean complement. The second, called postcomplement is defined by the com-
plement of one of its arguments. More precisely, let F be a type 〈1, 1〉 quan-
tifier. Then its postcomplement, noted F − not, is the type 〈1, 1〉 quantifier
defined as F − not(X)(Y) = F (X)(Y ′). Similarly, if Q is a type 〈1〉 quan-
tifier, then its postcomplement Q − not is defined as Q − not(Y) = Q(Y ′),
or, equivalently: Y ∈ Q − not iff Y ′ ∈ Q. Roughly speaking, syntactically,
the postcomplement corresponds to the negation of verb phrases. In what fol-
lows we will use in particular the fact that postcomplements of meets or joins
of two functions are respectively meets and joins of postcomplements of these
functions.

One of the best known constraints on possible denotations of determiners is
the constraint of conservativity. Since I am going to use two notions of conser-
vativity, which depend on which specific intersection of arguments is taken into
consideration, I will refer to this ”classical” notion of conservativity by CONS1.
By definition:

D1: F ∈ CONS1 iff for any property X,Y and Z if X ∩ Y = X ∩ Z then
F (X)(Y) = F (X)(Z)

There are two other equivalent definitions of conservativity indicated by the
following facts:

Fact 1: (cf. [9]) F ∈ CONS1 iff for any propertyX,Y , F (X)(Y) = F (X)(X∩Y)

Fact 2: F ∈ CONS1 iff for any propertyX,Y one has F (X)(Y) = F (X)(X ′∪Y)

The algebra CONS1 has two sub-algebras, the algebra INT of intersective
functions, and the algebra CO − INT of co-intersective functions ([5]):

D2: F ∈ INT , iff for all properties X, Y , Z and W , if X ∩ Y = Z ∩W then
F (X)(Y) is true iff F (Z)(W) is true.

D3: F ∈ CO − INT iff for all properties X, Y , Z and W , if X − Y = Z −W
then F (X)(Y) = F (Z)(W).

350 R. Zuber

Both sets INT and CO−INT form atomic (and complete) Boolean algebras.
Their atoms are determined by a property: for any property P the function FP

such that FP (X)(Y) = 1 iff X ∩ Y = P is a atom of INT and the function
FP such that FP (X)(Y) = 1 iff X − Y = P is an atom of CO − INT . Exclu-
sion determiners (cf.[16]) denote such atomic functions: no...except Leo and Lea
denotes an atomic intersective function determined by the set composed of two
elements, Leo and Lea.

Algebras INT and CO−INT are important for two reasons. First, as shown
in [5] the algebra CONS1 is a Boolean closure of INT and CO− INT . Second,
Keenan also shows that quantifiers belonging to INT or to CO−INT are exactly
those which are sortally reducible. This means that it is possible to replace salva
veritate the first argument of these quantifiers by the universal property E and
replace the second argument by a Boolean combination of the first argument with
the second: if F ∈ INT then F (X)(Y) = F (E)(X ∩Y) and if F ∈ CO−CARD
then F (X)(Y) = F (E)(X ′ ∪ Y).

Sortally reducible quantifiers have a more general property FIDQ or the
property of freely increasable domain of quantification. It is defined in D4 and
proposition 0 shows that members of INT and of CO−INT have this property:

D4: F ∈ FIDQ iff there is a binary Boolean function h such that F (X)(Y) =
F (X1)(h(X1,Y)), for any X1 such that X ⊆ X1.
Proposition 0: INT ∪ CO − INT ⊆ FIDQ

Since SOME is an intersective quantifier it follows from the above propositons
that SOME is a member of FIDQ and thus that Some wild cats are dangerous
is equivalent to Some cats are wild and dangerous.

The algebra INT contains a sub-algebra CARD of cardinal functions: they
are denotations of, roughly speaking, various numerals. By definition:

D4: F ∈ CARD iff for iff for all properties X, Y , W and Z, if |X ∩Y | = |Z ∩W |
then F (X)(Y) is true iff F (W)(Z) is true.

Atoms of CARD are functions fα, such that fα(X)(Y) = 1 iff |X∩Y | = α, for α
a cardinal,. Thus the determiner exactly n denotes an atomic cardinal function.

As might be expected the algebra CO− INT has an analogous sub-algebra.
This is the algebra CO − CARD of co-cardinal functions:

D5: F ∈ CO −CARD iff for iff for all properties X, Y , W and Z, if |X − Y | =
|W − Z| then F (X)(Y) = F (W)(Z)

Determiners like every...except five denote co-cardinal functions.
All the algebras presented above form the basic stock of algebras for unary

NL determiners (cf.[12]). We will study now some other semantic properties of
determiners and denotational algebras determined by them.

More Algebras for Determiners 351

3 Other Algebras

Let me start the presentation of other algebras by a somewhat less known al-
gebra GCARD of generalised cardinals. It was introduced in [19] in order to
account for some properties of the definite article the. By definition:

D6: F ∈ GCARD iff for all properties X,Y, Z if |X ∩ Y | = |X ∩ Z| then
F (X)(Y) = F (X)(Z).

Obviously the algebra GCARD1 is a proper sub-algebra of CONS1 and con-
tains as proper sub-algebras CARD and CO − CARD. Furthermore we have:

Proposition 1: The algebra GCARD is atomic and its atoms are determined
as follows: for any n ≤ |E| and any A ⊆ E, the function atA,n such that
atA,n(X)(Y) = 1 iff X = A and |X ∩ Y | = n is an atom of GCARD.

Other properties of GCARD1 relate it to other algebras I will introduce
now. If PDET is the algebra of possible denotations of determiners, that is
all functions in [P (E) → [P (E) → {0, 1}]] then conservative functions form a
sub-algebra of PDET . There are obviously many other sub-algebras of PDET .
Let us have a look at some of them. First we have a rather natural property of
symmetry determining symmetric determiners:

D7: F ∈ SYM iff for all properties X,Y one has F (X)(Y) = F (Y)(X)

We notice that all intersective functions are symmetric though there are sym-
metric ones which are not intersective. An analogous property which all co-
intersective functions have is the property CONTR of being contrapositional:

D8: F ∈ CONTR iff for all properties X,Y one has F (X)(Y) = F (Y ′)(X ′).

The quantifier ALL is obviously contrapositional. Moreover we have:

Proposition 2: CONS1 ∩ SYM = INT

Proposition 3: CONS1 ∩ CONTR = CO − INT

We prove proposition 3, more precisely its ”from left to right” part. Suppose
that for some arbitrary X,Y,W and Z we have (1) X − Y = W − Z. This is
equivalent to (2) E ∩ (X ′ ∪ Y) = E ∩ (W ′ ∪ Z). Then:

F (X)(Y) = F (X)(Y ∪X ′) = - CONS1 (fact 2)
=F (X − Y)(X ′) = - CONTR
=F (X − Y)(∅) = - CONS1 (fact 1)
=F (E)(X ′ ∪ Y) = - CONTR
=F (E)(W ′ ∪ Z) = - CONS1 (D 1 and (2))
=F (W − Z)(∅) = - CONTR
=F (W − Z)(W − Z ∩W ′) = - set theoretical equivalence

352 R. Zuber

=F (W − Z)(W ′) = -CONS1 (fact 1)
=F (W)(W ′ ∪ Z) = -CONTR
=F (W)(Z)

Thus all co-intersective functions are contrapositional.
There are various properties relating the algebra GCARD to CARD and

CO − CARD in a very similar way in which the algebra CONS1 is related to
INT and CO − INT . In particular we have:

Proposition 4: GCARD1 ∩ SYM = CARD

Proposition 5: GCARD1 ∩ CONTR = CO − CARD

The proofs of propositions 4 and 5 are similar to the proof of proposition 3.
Propositions 4 and 5 can be used to give a new characterisation of logical

quantifiers: these are quantifiers which are classically conservative, satisfy the
condition of extension and are permutation invariant. Keenan and Westerstahl
([12]) indicate that logical quantifiers are Boolean combinations of cardinal and
co-cardinal quantifiers. Given propositions 4 and 5 we have the following char-
acterisation of logical quantifiers (cf. [20]):

Proposition 6: A logical type 〈1, 1〉 quantifier is a Boolean combination of sym-
metric generalised cardinals and contrapositional generalised cardinals.

Recent research on natural language type 〈1, 1〉 quantifiers shows that in fact
there are natural classes of such quantifiers which need not to be conservative
in the classical sense. In particular such quantifiers can naturally occur in exis-
tential contexts (cf. [7]). Similarly Zuber ([17]) strongly suggests that in some
languages there are non-conservative determiners which are, however, system-
atically related to specific conservative ones: they are related by the relation of
argument inversion. Let Q be a type 〈1, 1〉 quantifier. Then:

D 10: Qi is the inverse of Q iff Qi(X)(Y) = Q(Y)(X)

For instance the determiner apart from Leo only... denotes a quantifier which
is the inverse of the quantifier denoted by every...except Leo. One observes also
that symmetric quantifiers are their own inverses. Similarly, inversion preserves
contraposition. On the other hand inversion does not preserve (classical) con-
servativity. It is interesting that inversion of classically conservative quantifiers
gives rise to a special class called CONS2 ([7]):

D 11: F ∈ CONS2 iff for all properties X,Y, Z if X ∩ Z = Y ∩ Z then
F (X)(Z) = F (Y)(Z)

The following fact is obvious now:

Fact 3: F ∈ CONS1 iff F i ∈ CONS2

Consider the expression mostly as a nominal determiner. In this case it denotes
the quantifier MOSTLY such that MOSTLY (X)(Y) = 1 iff |Y ∩X| > |Y −X|.

More Algebras for Determiners 353

This means that MOSTLY is the inverse of MOST and thus Mostly Germans
are bear drinkers is equivalent to Most bear drinkers are German.

As with classical conservativity quantifiers satisfying CONS2 can be char-
acterised in two other equivalent ways. thus we have:

Fact 4: F ∈ CONS2 iff for any X,Y one has F (X)(Y) = F (X ∩ Y)(Y)

Fact 5: F ∈ CONS2 iff for any X,Y one has F (X)(Y) = F (X ∪ Y ′)(Y)

It is easy to prove proposition 6 from which, in conjunction with proposition
2, follows proposition 7 (stated in Keenan [7]):

Proposition 7: CONS1 ∩ CONS2 ⊆ SYM

Proposition 8: CONS1 ∩ CONS2 = INT

In order to obtain a similar result for co-intersective quantifiers we need:

D 12: F ∈ CO − CONS2 iff for all properties X,Y, Z if X − Z = Y − Z then
F (X)(Z) = F (Y)(Z)

We have the following facts and propositions concerning CO−CONS2. We
prove Proposition 9, the proof of Proposition 10 being similar:

Fact 6: F ∈ CO − CONS2 iff for any property X,Y one has F (X)(Y) =
F (X − Y)(Y)

Fact 7: F ∈ CO − CONS2 iff for any property X,Y one has F (X)(Y) =
F (X ∪ Y)(Y)

Proposition 9: CONS1 ∩ CO − CONS2 ⊆ CONTR

Proposition 10: CONS1 ∩ CO − CONS2 = CO − INT

Proof of Proposition 9: Suppose F ∈ CONS1 ∩ CO − CONS2. Then
F (X)(Y) = F (X − Y)(Y) = - fact 5
=F (X − Y)(X ′ ∪ Y) = - classical conservativity (fact 2)
=F ((X ′ ∪ Y)′ ∩ Y ′)(X ′ ∪ Y) = - set theoretical equivalence
=F (Y ′)(X ′ ∪ Y) = - fact 5
=F (Y ′)(X ′) - fact 2

Given that co-intersective functions are classically conservative and contrapos-
itive we have to prove the ”from left to right” part. So suppose that for some
arbitrary sets X,Y,W and Z we have X−Y = W −Z and F ∈ CONS1∩CO−
CONS2. Then:

F (X)(Y) = F (X)(X ′ ∪ Y) = - fact 2
=F (X ∩ Y ′)(X ′) = - proposition 9
=F (X ∩ Y ′)(∅) = - CONS1 (fact 1)
=F (W−Z)(W ∩Z ′∩W ′) = - supposition and a set theoretical equivalence

354 R. Zuber

=F (W − Z)(W ′) = - classical conservativity
=F (W)(W ′ ∪ Z) = - CONTR
=F (W)(Z) -classical conservativity (fact 2)

There are two other algebras I would like to discuss briefly. The first is the
algebra PROPORT of proportional determiners. By definition ([6]):

D13: F ∈ PROPORT iff for all properties X,Y,W,Z if |W | × |X ∩ Y | =
|X| × |W ∩ Z| then F (X)(Y) = F (W)(Z)

Proportional quantifiers have the following properties:

Fact 8: Proportional quantifiers form a sub-algebra of GCARD.

Fact 9: F ∈ PROPORT iff F − not ∈ PROPORT

Proposition 11: For 1 ≤ m < n the functions Fm,n such that Fm,n(X)(Y) = 1
iff |X ∩ Y |/|X| = n/m are atoms of PROPORT

There are various examples of proportional determiners one of the best known
being most, in the sense more than half. The quantifiers denoted by the de-
terminers like exactly n percent are atoms of PROPORT . Other examples of
proportional quantifiers include six out of twelve, exactly 20 % , all but a tenth,
etc. According to fact 9, postcomplements of proportional quantifiers are also
proportional quantifiers.

It follows from the fact 8 that the class PROPORT includes various improp-
erly proportional quantifiers. For instance less than zero percent, at least zero
percent, zero percent, more than zero percent, hundred percent, more than fifty
and less than hundred percent, etc. are (denote), according to D13, proportional
quantifiers. These quantifiers correspond to the zero, the unit element of the
algebra PROPORT , and the quantifiers SOME, NO, ALL and MOST BUT
NOT ALL, respectively. We know that these quantifiers belong also to other al-
gebras. For instance SOME and NO are at the same time cardinal, intersective,
symmetric, generalised cardinal and conservative.

In spite of the above examples it is not true in general that cardinal or co-
cardinal functions are proportional quantifiers. The exact relationship between
CARD,GCARD and PROPORT remains to be established. Such a relationship
might be helpful to our better understanding of conditions for the first order
definissability since proportional quantifiers are precisely known as being in most
cases not definable in the first order logic (see [12] for a discussion).

The last algebra I want to mention is the algebra FPPCPL of quantifiers
which are fixed points with respect to the operation of postcomplementation:

D 14: F ∈ FPPCPL iff for all properties X,Y one has F (X)(Y) = F (X)(Y ′)

A natural example of a FPPCPL is given by the denotation of half of. The fol-
lowing proposition is a consequence of the fact that postcomplements preserve
meets and joins, allows us to obtain other natural examples of such quantifiers:

More Algebras for Determiners 355

Proposition 12: For any F type 〈1, 1〉 we have F ∨ F − not ∈ FPPCPL and
F ∧ F − not ∈ FPPCPL

Thus, given that SOME − not equals to NOT − ALL the complex quantifier
SOME BUT NOT − ALL is a fixed point with respect to postcomplement.
Similarly a conjunction or a disjunction of an intersective and the corresponding
co-intersective forms such a quantifier. This is for instance the case with FIV E
AND FIV E − not or TEN OR TEN − not.

Although the above examples of quantifiers which are fixed points with re-
spect to postcomplements are also examples of (classically) conservative quan-
tifiers, the definition D 14 and Proposition 12 are not restricted to such quan-
tifiers. The following proposition shows that it is possible to define the class
FPPCPL in the general unrestricted case using the definitional format adopted
here:

Proposition 13: Let F ∈ PDET . Then F ∈ FPPCPL iff there exists a binary
function ⊗ on sets for which X⊗Y = X⊗Y ′, for any X,Y , and if X⊗Y = X⊗Z
then F (X)(Y) = F (X)(Z)

Proof ⇒. Let F ∈ FPPCPL. Define a binary function ”⊗” as follows: X⊗Y =
F (X)(Y). Obviously X ⊗ Y = X ⊗ Y ′. It is easy to check that this function is
the function we need in order for the conclusion to be satisfied.
⇐ If ⊗ is such that X ⊗ Y = X ⊗ Y ′ and F satisfies the necessary condition,
then F (X)(Y) = F (X)(Y ′) and thus F ∈ FPPCPL.

Proposition 13 shows how we can define, for most classes of quantifiers we have
distinguished, their fixed point sub-classes. What is interesting is the fact that
this can be done using the general definitional format adopted here. Thus:

Proposition 14: For any type 〈1, 1〉 quantifier F , F ∈ CONS1∩FPPCPL iff
for any X,Y, Z, F (X)(Y) = F (X)(Z) whenever X ∩ Y = X − Z.

Similarly we can define, using the following propositions, quantifiers which are
proportional, cardinal, co-cardinal, generalised cardinal, etc and at the same
time are fixed points with respect to postcomplements. Here are just some such
definitional properties illustrating this claim:

Proposition 15: F ∈ PROPORT ∩FPPCPL iff F (X)(Y) = F (X)(Z) when-
ever for any X,Y,W,Z, |W | × |X ∩ Y | = |X| × |W − Z|.

Proposition 16: F ∈ INT ∩ FPPCPL iff F (X)(Y) = F (W)(Z) whenever
X ∩ Y = W − Z.

Proposition 17: F ∈ GCARD∩FPPCPL iff F (X)(Y) = F (X)(Z) whenever
|X ∩ Y | = |X − Z|.

Proposition 18: F ∈ CARD ∩ FPPCPL iff F (X)(Y) = F (X)(Z) whenever
|X ∩ Y | = |W − Z|.

356 R. Zuber

The following fact limits the usefulness of some of these propositions:

Fact 10: INT ∩ FPPCPL = CO − INT

This fact indicates that intersective or co-intersective functions which are at
the same time fixed points for postcomplement are just the trivial elements of
the algebra, the unit and the zero elements. In other words quantifiers which
satisfy the condition F (X)(Y) = F (W)(Z) if X∩Y = W −Z are just the trivial
elements of the algebra PDET .

Let me give some examples of non-trivial members of FPPCPL. They are
necessarily neither intersective nor co-intersective. Thus for any k, l, such that
k + l = |E| define a type 〈1, 1〉 quantifier Fk,l as Fk,l(X)(Y) = 1 iff |X| = k + l
and |X∩Y | = k or |X| = k+l and |X∩Y | = l. This function, which is denoted by
the somewhat complex determiner like Among the (k+l)...exactly k... or exactly
l... is a generalised cardinal function member of FPPCPL.

Another example is a determiner, also not very natural, like either only
Leo or else any other..., (with either...or understood as exclusive disjunction)
as in the following noun phrase: either only Leo or else every other student.
This determiner denotes a classically conservative function belonging to
FPPCPL.

The two preceding examples show the way to obtain proportional quantifiers
members of FPPCPL: we have just to make disjunctions which in some sense
exhaust all possibilities. Thus the determiners like 40 or 60 percent of or one
third or two thirds of are determiners denoting such quantifiers.

One of the interests of quantifiers which are fixed points for postcomplements
is that they may have linguistic applications showing the usefulness of various
generalisations concerning type 〈1, 1〉 quantifiers. These quantifiers are consid-
ered here as functions taking two sets into truth values. What is essential in
most cases is not the fact that such functions have truth-values as their values
but the fact that the results of applications of these functions are equal or not to
results of application of other functions. So obviously we can generalize most of
type 〈1, 1〉 quantifiers to functions from pairs of sets onto type of objects other
than truth-values. Such a move is useful if we want to analyse ”interrogative
determiners” in a way similar to the analysis of traditional ”declarative” de-
terminers (cf. [4]). Notice now that in questions fixed points may be involved.
For instance there is a level of analysis in which the two interrogatives Which
numbers are greater than n ? and Which numbers are not greater than n ?
should be considered as being equivalent. Since this equivalence is not the log-
ical equivalence, i.e. not equality of truth-values, a generalisation of involved
notions is necessary. This means in particular that the interrogative determiner
which denotes a generalised function which is fixed with respect to (generalised)
postcomplements. The fact that such equivalence need not hold for all inter-
rogatives (cf. [17]) just indicates that there are various types of interrogative
determiners.

More Algebras for Determiners 357

4 Higher Type Quantifiers

Up to now we were basically interested in the denotations of determiners tak-
ing one common noun to form an NP. Binary and, more generally n-ary de-
terminers, have been introduced and extensively studied in [10] and, in some-
what different perspective, in [3]. Their denotations form atomic Boolean alge-
bras. It is interesting that there is a systematic way to form n-ary determiners
from Boolean conjunctions and unary determiners ([10]). For instance the com-
plex determiners like all...and... or most ..and... should be considered as binary
determiners because the NP most students and teachers does not mean most
individuals who are students and teachers but rather most students and most
teachers.

What is important, however, that there exist intrinsically n-ary determiners,
that is determiners which are not Boolean compositions of unary ones. In other
words we should distinguish between reducible and non-reducible denotations
of n-ary determiners. More precisely, restricting ourselves to binary deterniners
and quantifiers of type 〈〈1, 1〉, 1〉 we have (cf. [3]):

D15: F of type 〈〈1, 1〉, 1〉 is 〈1, 1〉 reducible iff there are two type 〈1, 1〉 quanti-
fiers F1 and F2 and a binary Boolean function h such that for all sets X,Y, Z,
F (X,Y)(Z) = h(F1(X)(Z), F2(Y)(Z))

Clearly the quantifiers MOST...AND... and ALL...AND... are reducible. For
reducible quantifiers the following proposition holds:

Proposition 19: Reducible type 〈〈1, 1〉, 1〉 quantifiers form a Boolean algebra.

Beghelli ([3]) shows that comparative determiners like more...than... do not
denote reducible quantifiers. It follows from proposition 19 that not more...than...
also denote unreducible quantifiers.

There are thus n-ary determiners denoting higher type quantifiers. We will
study only some higher type quantifiers: the ones which correspond to binary
relations with relations as arguments. So in general they are of the type 〈1k, 1l〉
which corresponds to binary relations between k-ary relations and l-ary relations.
Even more specifically we will consider quantifiers of this type assuming that
either k = 1 or l = 1. Determiners denoting such quantifiers are sometimes
called structured (n-ary) determiners.

Most of the properties of type 〈1, 1〉 quantifiers we studied generalise to
higher type quantifiers, if we keep in mind the distinction between ”subject”
arguments and the ”predicate” arguments of a quantifier. The idea, roughly,
is that instead of looking at intersections, or cardinalities of the intersection,
of the only argument of an unary determiner with the predicative argument
we have to look at intersections, or the cardinalities of intersections, of every
”subject” argument of the n-ary determiner, with the predicative argument (or
predicative arguments). Let us first define the post-complement of a higher type
quantifier:

358 R. Zuber

D 16: If F is a type 〈1k, 1l〉 quantifier then F −not is that type 〈1k, 1l〉 quantifier
for which F − n(X1, ..., Xk)(Y1, ...,Yl) = F (X1, ..., Xk)(Y ′

1 , ...,Y
′
l)

For other definitions we restrict one of the arguments of the relation to a
set. Reducible higher type quantifiers give us a hint as to exactly which inter-
sections should be taken into consideration in such definitions. This is because,
as we observe, reducible higher type quantifiers inherit some of their properties
from lower order one to which they are reducible. Thus, roughly, if a higher type
quantifier is reducible to two conservative quantifiers of lower type then it is
reasonable to suppose that the higher type quantifier is conservative. The same
with other properties. Having this in mind we get various definitions of higher
type quantifiers. In fact some of such definitions have already been applied (see
[10],[3],[7]). Thus let D be a type 〈1n, 1〉 quantifier, that is a function from n-
tuples of subsets of E to type 〈1〉 functions (i.e. denotations of NPs) over E
and let CONS1〈1n,1〉 be the set of (classically) conservative denotations of n-ary
structured determiners. Then

D17: D ∈ CONS1〈1n,1〉 iff ∀Xi,Y1,Y2, D(X1, ..., Xn)(Y1) = D(X1, ..., Xn)(Y2)
if Xi ∩ Y1 = Xi ∩ Y2, for every 1 ≤ i ≤ n.

As in the case of type 〈1, 1〉 quantifiers we have equivalent definitions of con-
servativity for higher type quantifiers. Thus, given that Ai ∩B = Ai ∩B∩

⋃
nAi

for all Ai, B ∈ E, we have the following propositions concerning conservativity
for higher types:

Proposition 20: D ∈ CONS1〈1n,1〉 iff D(X1, ..., Xn)(Y) = D(X1, ..., Xn)(Y ∩⋃
nAi)

Proposition 21: D ∈ CONS1〈1n,1〉 iff D(X1, ..., Xn)(Y) = D(X1, ..., Xn)(Y ∪⋂
nA

′
i)

In a similar way we define other higher type quantifiers. For instance intersec-
tive, co-intersective, cardinal, co-cardinal, and generalised cardinal functions are
defined as follows;

D 18: D ∈ INT〈1n,1〉 iff ∀Xi,Yi, Z1, Z2, D(X1, ..., Xn)(Z1) = D(Y1, ...,Yn)(Z2)
if Xi ∩ Z1 = Yi ∩ Z2, for every 1 ≤ i ≤ n.
D 19: D ∈ CO − INT〈1n,1〉 iff whenever Xi − Z1 = Yi − Z2, ∀Xi,Yi, Z1, Z2, we
have D(X1, ..., Xn)(Z1) = D(Y1, ...,Yn)(Z2)
D20: D ∈ CARD〈1n,1〉 iff ∀Xi,Yi, Z1, Z2, D(X1, ..., Xn)(Z1) = D(Y1, ...,Yn)(Z2)
if |Xi ∩ Z1| = |Yi ∩ Z2|, for every 1 ≤ i ≤ n.
D21: D ∈ CO−CARD〈1n,1〉 iff ∀Xi,Yi, Z1, Z2, if |Xi−Z1| = |Yi−Z2|, for every
1 ≤ i ≤ n, then D(X1, ..., Xn)(Z1) = D(Y1, ...,Yn)(Z2)
D22: D ∈ GCARD〈1n,1〉 iff ∀Xi,Y1,Y2, D(X1, ..., Xn)(Y1) = D(X1, ..., Xn)(Y2)
if |Xi ∩ Y1| = |Yi ∩ Y2|, for every 1 ≤ i ≤ n.

More Algebras for Determiners 359

For these quantifiers the following facts hold:

Fact 11: CONS1〈1n,1〉,GCARD〈1n,1〉, INT〈1n,1〉, CO−INT〈1n,1〉, CARD〈1n,1〉,
CO − CARD〈1n,1〉 form Boolean algebras.

Fact 12: CARD〈1n,1〉 ⊆ INT〈1n,1〉 ⊆ CONS1〈1n,1〉

Fact 13: CARD〈1n,1〉 ∪ CO − CARD〈1n,1〉 ⊆ GCARD〈1n,1〉 ⊆ CONS1〈1n,1〉

In fact more can be shown. Using Proposition 20 and some results from [10] we
can indicate atoms of various higher type algebras showing that they are atomic.
Thus we have:

Fact 14: Let 1 ≤ i ≤ n, Pi ⊆ E and P ⊆
⋃

i Pi. Then the function DP1,...,Pn,P

such that DP1,...,Pn,P (X1, ..., Xn,)(Y) = 1 iff Xi = Pi and P = Y ∩
⋃

iXi is an
atom of CONS1〈1n,1〉. All atoms of CONS1〈1n,1〉 are of this form.

Fact 15: The function FP1,...,Pn
such that FP1,...,Pn

(X1, ..., Xn)(Y) = 1 iff
Xi ∩ Y = Pi are atoms of INT〈1n,1〉.

Fact 16: The function FP1,...,Pn
such that FP1,...,Pn

(X1, ..., Xn)(Y) = 1 iff
XiY

′ = Pi are atoms of CO − INT〈1n,1〉.

Thus atoms of algebras of higher type intersective and co-intersective functions
are determined by sequences of sets. For n = 1 we obtain from these facts atoms
of the algebras of the corresponding type 〈1, 1〉 quantifiers. In particular for any
A,B ⊆ E such that B ⊆ A, the function FA,B such that FA,B(X)(Y) = 1 iff
X = A and Y ∩ X = B is an atom of CONS1 (cf. [5]). Furthermore, atoms
INT and CO − INT are related to atoms of CONS1 in the way indicated in

Proposition 22: Let FP1,...,Pn,P be an atom of CONS1〈1n,1〉, GP1∩P,...,Pn∩P be
an atom of INT〈1n,1〉 and HP1−P,...,Pn−P be an atom of CO − INT〈1n,1〉. Then
FP1,...,Pn,P = GP1∩P,...,Pn∩P ∧HP1−P,...,Pn−P .

s
We observe also that the application of the operation of postcomplementation
to higher type quantifiers holds results similar to to the ones we get in the case
of simple quantifiers. Thus:

Fact 17: D ∈ INT〈1n,1〉 iff D − not ∈ CO − INT〈1n,1〉.

It is also possible to generalise some other properties studied above to non unary
determiners, in particular properties of being symmetric or contrapositional.
Recall that quantifiers are relations between relations. Since some of these rela-
tions are binary they can be symmetric. Furthermore, since such relations relate
Boolean objects, to check whether they relate permuted complements of their
arguments is possible as well. This leads to the generalised notion of contrapo-
sitionality of a quantifier as well, especially when the objects standing in the
binary relation are of the same type. We know that quantifiers corresponding to
binary relations may relate objects of different types. For instance, type 〈1, 1〉, 1〉
quantifiers are relations between binary relations and sets (as in more students
than teachers are vegetarians and type 〈1, 〈1, 1〉〉 quantifiers are relations between

360 R. Zuber

sets and binary relations (as in more vegetarians are students than teachers). To
extend the notion of symmetry and contrapositionality to such cases we need
general definitions to be given in the framework we used in this paper:

D 23: A type 〈1n, 1〉 quantifier D is symmetric iff there exists a binary commuta-
tive function ⊗ such that ∀Xi,Yi, Z1, Z2, D(X1, ..., Xn)(Z1) = D(Y1, ...,Yn)(Z2)
if Xi ⊗ Z1 = Yi ⊗ Z2, for every 1 ≤ i ≤ n.
D 24: A type 〈1n, 1〉 quantifier D is contrapositional iff there exists a binary
commutative function ⊗ such that if Xi ⊗ Z ′

1 = Yi ⊗ Z ′
2, ∀Xi,Yi, Z1, Z2, all

1 ≤ i ≤ n then D(X1, ..., Xn)(Z1) = D(Y1, ...,Yn)(Z2)

It is easy to check that if n = 1 we get from D 23 the ”ordinary” symmetry for
simple quantifiers and from D 24 an ”ordinary” contraposition for simple quanti-
fiers. For instance one observes that post-complements of symmetric quantifiers
are contrapositional and vice versa. Furthermore the following propositions are
true:

Proposition 23: Let F ∈ PDET〈1n,1〉,G ∈ PDET〈1,1n〉 and F (X1, ..., Xn)(Y) =
G(Y)(X1, ..., Xn). Then F is symmetric iff G is symmetric.

Proposition 24: Let F ∈ PDET〈1n,1〉,G ∈ PDET〈1,1n〉 and F (X1, ..., Xn)(Y) =
G(Y ′)(X ′

1, ..., X
′
n). Then F is contrapositional iff G is contrapositional.

Proportional n-ary determiners represent a more difficult case since propor-
tionality in this case may depend on whether we consider reducible or unreducible
quantifiers. We have seen that determiners like most or 20 percent of denote pro-
portional type 〈1, 1〉 quantifiers. The question we can ask now is the following:
are the reducible type 〈〈1, 1〉, 1〉 quantifiers based on them and the corresponding
type 〈1〉 quantifiers also proportional? Should we consider for instance that the
NP most students and teachers (considered as containing a binary determiner)
involves proportional quantification. I think the answer should be negative. The
reason is that in this case there is no proportional relation between the two ar-
guments: students and teachers. The truth value of the sentence Most students
and teachers danced does not depend on any proportional relation between the
number of students and the number of teachers. This is different from the case
of unreducible determiners like twice as many students as teachers since in the
latter example there is a (non trivial) proportional relation between the number
of students and the number of teachers. Any general definition of proportional
quantifiers should account for this difference. This leads to the following defini-
tion of type 〈〈1, 1〉, 1〉 proportional quantifiers:

D 25: D ∈ PROPORT〈12,1〉 iff for all X1, X2,Y1,Y2, Z1, Z2, D(X1, X2)(Z1) =
D(Y1,Y2)(Z2) whenever |Y1| × |Y2| × |X1 ∩ Z1| = |X1| × |X2| × |Y1 ∩ Z2| and
|Y1| × |Y2| × |X2 ∩ Z1| = |X1| × |X2| × |Y2 ∩ Z2|

One checks by calculation that according to D 22 determiners like twice as
many... as... or 20 percent more...than... denote proportional quantifiers whereas

More Algebras for Determiners 361

the reducible quantifier MOST...AND... is not proportional. Furthermore the
following proposition is true:

Proposition 25: PROPORT〈12,1〉 is a sub-algebra of GCARD〈12,1〉

Incidentally the analogue of fact 9 (that proportionality is closed with respect
to postcomplements) does not hold for the higher type quantifiers. We observe
also that even if definition D 25 can be formally extended to n-ary cases it is not
clear what would be empirical content of such extensions. In fact it seems that
proportional quantifiers still need to be studied more deeply.

5 Conclusive Remarks

Most of this paper is occupied by the presentation of some new or more general
algebras representing possible denotations for nominal determiners, not only
unary ones. I left aside the problem of how many quantifiers there are in various
algebras when different constraints defining them are taken into account. The
exact number of quantifiers, members of a given fixed algebra, depends of course
on the number of individuals in the model and a specific definitional restriction.
Some of these numbers have been established for various specific cases ([15], [10],
[2], [6], [12], [8]).

The algebras which were studied here are basicallyGCARD, SYM , CONTR,
FPPCPL and, to some extend, PROPORT . One of the reasons for introduc-
ing them is that they give rise to natural inferential patterns. Another reason is
that all of them can be considered, it seems to me, as representing ”borderline
cases” between ”linguistically useful” and ”logically natural” quantifiers. For
instance, concerning SYM , CONTR and FPPCPL we observe that they are
defined by very natural ”logical” properties. The naturalness of these properties
and relations between SYM and INT on the one hand and between CONTR
and CO − INT on the other hand established above are sufficient reasons, I
believe, to study them. Proportional quantifiers are on the border-line because
they involve two different cognitive competences: surely a linguistic competence
and, in addition, an elementarily arithmetic competence which is probably not
a linguistic one.

References

1. Barwise, J. and Cooper, R. (1981) Generalized quantifiers and natural language
Linguistics and Philosophy 4, 159-219

2. Beghelli, F. (1992) Comparative Quantifiers, in Dekker, P. and Stokhof, M. (eds.)
Proc. of the VIII Amsterdam Colloquium

3. Beghelli, F. (1994) Structured Quantifiers, in Kanazawa, M. and Piñon, Ch. (eds.)
Dynamics, Polarity, and Quantification, CSLI Publications, 119-145

4. Gutiérrez-Rexach, J. (1997) Questions and Generalized Quantifiers, in A. Szabolcsi
(ed.) Ways of Scope Taking, Kluwer, pp. 409-452

362 R. Zuber

5. Keenan, E. L. (1993) Natural Language, Sortal Reducibility and Generalised Quan-
tifiers, Journal of Symbolic logic 58:1, pp. 314-325.

6. Keenan, E.L. (2002) Some Properties of Natural Language Quantifiers: Generalized
Quantifier Theory, Linguistics and Philosophy 25:5-6, pp.627-654

7. Keenan, E. L. (2003) The Definiteness Effect: Semantics or Pragmatics, Natural
Language Semantics, 3:2, pp.187-216

8. Keenan, E. L. (in press) Excursions in Natural Logic, forthcoming in Casadio,
C. et al. (eds.) Language and Grammar: Studies in Mathematical Linguistics and
Natural Language, CSLI, pp.3-24

9. Keenan, E. L. and Faltz, L. M. (1985) Boolean Semantics for Natural Language,
D. Reidel Publishing Company, Dordrecht.

10. Keenan, E. L. and Moss, L. (1985) Generalized quantifiers and the expressive
power of natural language, in J. van Benthem and A. ter Meulen (eds.) Generalized
Quantifiers, Foris, Dordrecht, pp.73-124

11. Keenan, E. L. and Stavi, J. (1986) A semantic characterisation of natural language
determiners, Linguistics and Philosophy 9, pp.253-326

12. Keenan , E. L. and Westerstahl, D. (1997) Generalized Quantifiers in Linguistics
and Logic, in van Benthem, J. and ter Meulen, A. (eds.) Handbook of Logic and
Language, Elsevier, pp. 837-893.

13. Mostowski, A. (1957) On a generalisation of quantifiers, Fundamenta Mathematicae
44, pp.12-36

14. Thijsse, E. (1984) Counting Quantifiers, in J. van Benthem and A. ter Meulen
(eds.) Generalized Quantifiers, Foris, Dordrecht, pp.127-146

15. Väänänen, J. and Westerstahl, D. (2002) On the Expressive Power of Monotone
Natural Language Quantifiers over Finite Models, Journal of Philos. Logic 31:4,
pp. 327-358

16. Zuber, R. (1998) On the Semantics of Exclusion and Inclusion Phrases, in Lawson,
A. (ed.) SALT8, Cornell University Press, pp. 267-283

17. Zuber, R. (2000) On Inclusive Questions, in Billerey et al. (eds.) WCCFL 19
Proceedings, Cascadilla Press, pp.617-630

18. Zuber, R. (2004a) A class of non-conservative determiners in Polish, Linguisticae
Investigationes 27:1, pp. 147-165

19. Zuber, R. (2004b) Some remarks on syncategorematicity, in L. Hunyadi et al.:
The Eight Symposium on Logic and Language: Preliminary Papers, Debrecen, pp.
165-174

20. Zuber, R. (unpublished) Une caractérisation algébrique des quantificateurs logiques

Author Index

Béchet, Denis 1, 18
Bonato, Roberto 35
Burke, David A. 51

Corrêa, Marceloda S. 67

Crabbé, Benôıt 84

Dikovsk , Alexander 18

Foret, Annie 1, 18
Francez, Nissim 101

Gaiffe, Bertrand 287
Gardent, Claire 131
Gärtner, Hans-Martin 114

Haddad, Bassam 147
Haeusler, E. Hermann 67
Hale, John T. 162

Johannisson, Kristofer 51

Kanazawa, Makoto 330
Kühnberger, Kai-Uwe 255

Lecomte, Alain 205
Ljunglöf, Peter 177

Michaelis, Jens 114
Moreau, Erwan 189

Nait Abdallah, Areski 205
Niehren, Joachim 221

Parmentier, Yannick 131
Preller, Anne 238

Reuer, Veit 255

Sagot, Benôıt 271
Seddah, Djamé 287
Stabler, Edward P. 162

Tellier, Isabelle 301
Third, Allan 317

Villaret, Mateu 221

Yaseen, Mustafa 147
Yoshinaka, Ryo 330

Zuber, Richard 347

y

	Frontmatter
	LACL
	k-Valued Non-associative Lambek Grammars (Without Product) Form a Strict Hierarchy of Languages
	Dependency Structure Grammars
	Towards a Computational Treatment of Binding Theory
	Translating Formal Software Specifications to Natural Language
	On the Selective Lambek Calculus
	Grammatical Development with {\sc Xmg}
	Lambek-Calculus with General Elimination Rules and Continuation Semantics
	A Note on the Complexity of Constraint Interaction: Locality Conditions and Minimalist Grammars
	Large Scale Semantic Construction for Tree Adjoining Grammars
	A Compositional Approach Towards Semantic Representation and Construction of ARABIC
	Strict Deterministic Aspects of Minimalist Grammars
	A Polynomial Time Extension of Parallel Multiple Context-Free Grammar
	Learnable Classes of General Combinatory Grammars
	On Expressing Vague Quantification and Scalar Implicatures in the Logic of Partial Information
	Describing Lambda Terms in Context Unification
	Category Theoretical Semantics for Pregroup Grammars
	Feature Constraint Logic and Error Detection in ICALL Systems
	Linguistic Facts as Predicates over Ranges of the Sentence
	How to Build Argumental Graphs Using TAG Shared Forest: A View from Control Verbs Problematic
	When Categorial Grammars Meet Regular Grammatical Inference
	The Expressive Power of Restricted Fragments of English
	The Complexity and Generative Capacity of Lexicalized Abstract Categorial Grammars
	More Algebras for Determiners

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

